方程

$\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$

其中$s(i)$为i的前缀和再加上$i$

对于某个$i$若$j$比$k$优,则

$\large f(j)+(s(i)-s(j)-L-1)^2<f(k)+(s(i)-s(k)-L-1)^2$

展开可以化简成$\large (f(j)-f(k)+s(j)^2-s(k)^2)/(2*(s(j)-s(k)))<=s(i)-L-1$

这样我们就可以用斜率优化了

设点$i$的坐标为$(f(i)+s(i)^2,2*s(i))$,维护一个下凸壳即可

代码

#include<cstdio>
#define maxn 50005
#define LL long long
int n,l,S,T,q[maxn];
LL f[maxn],s[maxn];
double calc(int a,int b){
return (f[a]-f[b]+s[a]*s[a]-s[b]*s[b])/(2.0*(s[a]-s[b]));
}
void insert(int x){
while(S<T-&&calc(x,q[T-])<=calc(q[T-],q[T-]))T--;
q[T++]=x;
}
int main(){
scanf("%d%d",&n,&l);l++;
for(int i=;i<=n;i++){
scanf("%d",s+i);
s[i]+=s[i-]+;
}
T++;
for(int i=;i<=n;i++){
while(S<T-&&calc(q[S+],q[S])<=s[i]-l)S++;
int x=q[S];
f[i]=f[x]+(s[i]-s[x]-l)*(s[i]-s[x]-l);
insert(i);
}
printf("%lld\n",f[n]);
return ;
}

bzoj1010: [HNOI2008]玩具装箱toy——斜率优化的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  4. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  5. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  6. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  7. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  8. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  9. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

随机推荐

  1. cdq分治·三维偏序问题

    转载自FlashHu大佬的博客CDQ分治总结(CDQ,树状数组,归并排序),在讲述部分有部分删改,用了自己的代码 CDQ分治的思想 CDQ分治是基于时间的离线分治算法.这一类分治有一个重要的思想——用 ...

  2. Feign Request header is too large

    Feign远程调用时数据量过大报错 看异常提示猜测Feign在请求其他服务时,将数据存在了header,导致数据量过大报错 MultiValueMap<String, String> pa ...

  3. (转)sql的group by应用

    转载于:http://www.studyofnet.com/news/247.html 本文导读:在实际SQL应用中,经常需要进行分组聚合,即将查询对象按一定条件分组,然后对每一个组进行聚合分析.创建 ...

  4. win7 设置双屏壁纸

    http://dualmonitortool.sourceforge.net/ http://www.displayfusion.com/Features/Wallpaper/ 以第一个软件为例: 1 ...

  5. Windows环境下安装openface

    由于昨天在学习人脸识别,就涉及到了openface 我使用的是Windows环境下的pycharm开发工具,昨天一直安装openface但就是没有相关的教程,使用pip install openfac ...

  6. 如何查看jdk版本和路径

    cmd进入命令提示符,查看jdk版本,输入java -version;查看jdk路径 ,输入set java home.,这个也是默认路径

  7. 【牛客提高训练营5B】旅游

    题目 吉老师的题时过一年还是不会做 从\(1\)号点出发经过每条边至少一次并且还要回到\(1\)号点,这跟欧拉回路的条件非常像,但是欧拉回路的实际上是"经过每一条边恰好一次并且回到出发点&q ...

  8. [USACO11OPEN]玉米田迷宫Corn Maze

    题目描述 This past fall, Farmer John took the cows to visit a corn maze. But this wasn't just any corn m ...

  9. 2018Github用户kamranahmedse分享的开发路线

    下面四张图是Github用户kamranahmedse分享的,主要是web前端开发.后端开发以及DevOps开发的路线图,涉及的点还是很全面的,如果你对这部分有兴趣,并且希望有所作为,以下这几张路线图 ...

  10. 基于第三方开源库的OPC服务器开发指南(3)——OPC客户端

    本篇将讲解如何编写一个OPC客户端程序测试我们在前文<基于第三方开源库的OPC服务器开发指南(2)——LightOPC的编译及部署>一篇建立的服务器.本指南的目的是熟悉OPC服务器的开发流 ...