方程

$\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$

其中$s(i)$为i的前缀和再加上$i$

对于某个$i$若$j$比$k$优,则

$\large f(j)+(s(i)-s(j)-L-1)^2<f(k)+(s(i)-s(k)-L-1)^2$

展开可以化简成$\large (f(j)-f(k)+s(j)^2-s(k)^2)/(2*(s(j)-s(k)))<=s(i)-L-1$

这样我们就可以用斜率优化了

设点$i$的坐标为$(f(i)+s(i)^2,2*s(i))$,维护一个下凸壳即可

代码

#include<cstdio>
#define maxn 50005
#define LL long long
int n,l,S,T,q[maxn];
LL f[maxn],s[maxn];
double calc(int a,int b){
return (f[a]-f[b]+s[a]*s[a]-s[b]*s[b])/(2.0*(s[a]-s[b]));
}
void insert(int x){
while(S<T-&&calc(x,q[T-])<=calc(q[T-],q[T-]))T--;
q[T++]=x;
}
int main(){
scanf("%d%d",&n,&l);l++;
for(int i=;i<=n;i++){
scanf("%d",s+i);
s[i]+=s[i-]+;
}
T++;
for(int i=;i<=n;i++){
while(S<T-&&calc(q[S+],q[S])<=s[i]-l)S++;
int x=q[S];
f[i]=f[x]+(s[i]-s[x]-l)*(s[i]-s[x]-l);
insert(i);
}
printf("%lld\n",f[n]);
return ;
}

bzoj1010: [HNOI2008]玩具装箱toy——斜率优化的更多相关文章

  1. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  2. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  4. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  5. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  6. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  7. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  8. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  9. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

随机推荐

  1. NX二次开发-UFUN修剪体UF_MODL_trim_body

    1 NX11+VS2013 2 3 4 #include <uf.h> 5 #include <uf_modl.h> 6 7 8 UF_initialize(); 9 10 / ...

  2. NX二次开发-UFUN移动工程图视图UF_DRAW_move_view

    #include <uf.h> #include <uf_draw.h> #include <uf_drf.h> #include <uf_obj.h> ...

  3. Mybatis笔记 - Mapper动态代理

    使用Mybatis开发Dao,通常有两个方法,即原始Dao开发方法和Mapper接口开发方法. Mapper接口开发方式是基于入门程序的基础上,对 控制程序 进行分层开发,程序员只需要 编写mappe ...

  4. centos7.5下coredns+etcd搭建DNS服务器

    coredns简介 安装etcd 安装coredns 设置域名解析 A记录 AAAA记录 CNAME记录 SRV记录 TXT记录 coredns简介 CoreDNS是一个DNS服务器,和Caddy S ...

  5. project3_NeedToLoginCalculator(需要进行登陆确认的计算器)

    下列实现代码说明: 下列代码主要是实现计算器功能.由于之前在莫凡老师开设的<用 python 和 tkinter 做简单的窗口视窗>课程当中学习了tkinter的内容,在该课程的结束部分是 ...

  6. AtCoder ABC 127F Absolute Minima

    题目链接:https://atcoder.jp/contests/abc127/tasks/abc127_f 题目大意 初始状态下$f(x) = 0$,现在有 2 种模式的询问,第一种以“1 a b” ...

  7. C#中ORM的简单实现

    ORM在功能上主要有两个: 把从数据库中查询返回的DataSet,DataTable转化为我们可以方便使用的实体类集合: 把要对数据库操作的实体类集合或条件转化为数据库可以直接执行的SQL语句.

  8. 关于DEBUG的一点体会

    目录 1. 看待问题 2. 为什么要debug 3. 我理解的问题定位能力 4. debug能力模型的4个层级 5. 小结与扩展 1. 看待问题 遇到更高级的bug,解决更重要的问题,是开发同学的迭代 ...

  9. java-day15

    File类 文件和目录路径名的抽象表示,主要用于文件和目录的创建.查找和删除等操作 静态成员 static String pathSeparator 路径分隔符 File.pathSeparator ...

  10. Python匹马行天下之初识python!

    python的发展史 1989年,被称为龟叔的Guido在为ABC语言写插件时,产生了写一个简洁又实用的编程语言的想法,并开始着手编写.因为其喜欢Monty Python喜剧团,所以将其命名为pyth ...