题意:求01成立。

并查集维护,记录一个变量判断决策。

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn = 4000010;
int f[maxn];
inline int find(int x){
return x == f[x]?x : f[x] = find(f[x]);
}
signed main()
{
ios::sync_with_stdio(false);
int T;
cin >> T;
while(T--){
int n,m;
cin >> n >> m;
int tag = (m < n + 2);
for(int i = 1;i <= (n << 1); ++i){
f[i] = i;
}
for(int i = 1;i <= m; ++i){
int x,y;
cin >> x >> y;
f[find(x)] = find(y + n);
f[find(y)] = find(x + n);
}
for(int i = 1;i <= n && tag; ++i){
tag &= (find(i) != find(i + n));
}
if(tag) puts("YES");
else puts("NO");
}
return 0;
}

[BJOI 2018]染色的更多相关文章

  1. [HAOI 2018]染色

    传送门 Description 一个长度为\(N\)的序列, 每个位置都可以被染成 \(M\)种颜色中的某一种. 出现次数恰好为 \(S\)的颜色种数有\(i\)种, 会产生\(w_i\)的愉悦度. ...

  2. HAOI 2018 染色(容斥+NTT)

    题意 https://loj.ac/problem/2527 思路 设 \(f(k)\) 为强制选择 \(k\) 个颜色出现 \(s\) 种,其余任取的方案数. 则有 \[ f(k)={m\choos ...

  3. [BJOI 2018]求和

    Description 题库链接 给你一棵 \(n\) 个结点的有根树, \(m\) 次询问这棵树上一段路径上所有节点深度的 \(k\) 次方和. \(1\leq n\leq 300000,1\leq ...

  4. 【BJOI 2018】 求和

    [题目链接] 点击打开链接 [算法] 预处理i^k的前缀和,对于每次询问,树上倍增即可 时间复杂度 : O(nk + mlog(n)) [代码] #include<bits/stdc++.h&g ...

  5. luogu 4429 染色

    bjoi 2018 染色 推了个错误结论得了60分? 题目大意: 一个无重边和自环的无向图,并且对每个点分别给了一个大小为2的颜色集合,只能从这个集合中选一种颜色给这个点染色 求一个染色方案使得没有两 ...

  6. luogu 4427 求和

    bjoi 2018 求和 唯一一道可能切的题一个数组还没开long long就成0分了 题目大意: 一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k次方和,而且每次的k可能是不同的 此处 ...

  7. Solution -「HAOI 2018」「洛谷 P4491」染色

    \(\mathcal{Description}\)   Link.   用 \(m\) 种颜色为长为 \(n\) 的序列染色,每个位置一种颜色.对于一种染色方案,其价值为 \(w(\text{出现恰 ...

  8. 「HAOI 2018」染色

    题目链接 戳我 \(Solution\) 观察题目发现恰好出现了\(s\)次的颜色有\(k\)种,不太好弄. 所以我们设\(a[i]\)表示为恰好出现了\(s\)次的颜色有至少\(i\)种的方案数,然 ...

  9. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

随机推荐

  1. 从零开始搭建系统1.1——CentOs安装

    本篇主要是记录安装CentOs的过程,为什么会选择CentOs,没有过多的原因,主要是出于CentOs相对来说安装的人比较多, 以后有问题了方便查资料.本次安装是安装在一台笔记本上,WIN7+Cent ...

  2. day03 mysql外键 表的三种关系 单表查询 navicat

    day03 mysql navicat   一.完整性约束之     外键 foreign key     一个表(关联表: 是从表)设置了外键字段的值, 对应的是另一个表的一条记录(被关联表: 是主 ...

  3. leetcode-126-单词接龙

    题目描述: class Solution: def findLadders(self, beginWord: str, endWord: str, wordList: list) -> list ...

  4. 使用multiprocessing模块创建进程

    #_author:来童星#date:2019/12/17from multiprocessing import Processimport timeimport os#两个子进程将会调用的两个方法de ...

  5. Java中的并发库学习总结

    我们都知道,在JDK1.5之前,Java中要进行业务并发时,通常需要有程序员独立完成代码实现,当然也有一些开源的框架提供了这些功能,但是这些依然没有JDK自带的功能使用起来方便.而当针对高质量Java ...

  6. 线段树区间离散化——牛客多校E

    这个区间离散化把我调死了.. 总之用vector来离散化,然后叶子节点维护的是一段区间,记录下每个叶子结点的起点+长度 千万要注意下标不能弄错! #include<bits/stdc++.h&g ...

  7. 48 git使用

    0 引言 git/github是当前最好的代码版本管理和协同工作工具.最近我终于用上了这一先进工具,撒花撒花! # 先把大神廖雪峰的链接献上https://www.liaoxuefeng.com/wi ...

  8. MTT:任意模数NTT

    MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...

  9. 基于SPI的数据报过滤原理与实现

    一.个人防火墙技术概述 随着网络安全问题日益严重,广大用户对网络安全产品也越来越关注.防火墙作为一种网络安全工具,早已受到大家的青睐.在PC机上使用的个人防火墙,很大程度上成为广大网民的安全保护者.W ...

  10. PMP项目管理——项目范围管理-规划范围管理

    规划范围管理是为记录如何定义.确认和控制项目范围及产品范围,而创建范围管理计划的过程.主要作用是,在整个项目期间对如何管理范围提供指南和方向.制定范围管理计划和细化项目范围始于对下列信息的分析:项目章 ...