BZOJ #5457: 城市 [线段树合并]
线段树合并的板子题,每次从下到上合并就完事了
// by Isaunoya
#include <bits/stdc++.h>
using namespace std;
#define rep(i, j, n) for (int i = j; i <= n; i++)
#define in cin
#define out cout
#define pii pair<int, int>
#define fir first
#define sec second
int n, m;
const int maxn = 4e5 + 54;
int rt[maxn], ls[maxn << 5], rs[maxn << 5], cnt = 0;
pii mx[maxn << 5], ans[maxn];
void upd(int& p, int l, int r, int x, int v) {
if (!p) p = ++cnt;
if (l == r) {
mx[p] = { v, -x };
return;
}
int mid = l + r >> 1;
if (x <= mid)
upd(ls[p], l, mid, x, v);
else
upd(rs[p], mid + 1, r, x, v);
mx[p] = max(mx[ls[p]], mx[rs[p]]);
}
int merge(int x, int y, int l, int r) {
if (!x || !y) return x | y;
if (l == r) {
mx[x].fir += mx[y].fir;
return x;
}
int mid = l + r >> 1;
ls[x] = merge(ls[x], ls[y], l, mid);
rs[x] = merge(rs[x], rs[y], mid + 1, r);
mx[x] = max(mx[ls[x]], mx[rs[x]]);
return x;
}
vector<int> g[maxn];
int fa[maxn];
void dfs(int u) {
// for (int v : g[u])
// if (fa[u] ^ v) fa[v] = u, dfs(v);
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (fa[u] ^ v) {
fa[v] = u;
dfs(v);
}
}
ans[u] = mx[rt[u]];
rt[fa[u]] = merge(rt[fa[u]], rt[u], 1, n);
}
signed main() {
// code begin.
ios ::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
in >> n >> m;
rep(i, 2, n) {
int u, v;
in >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
rep(i, 1, n) {
int a, b;
in >> a >> b;
upd(rt[i], 1, n, a, b);
}
dfs(1);
rep(i, 1, n) out << -ans[i].sec << ' ' << ans[i].fir << '\n';
return out.flush(), 0;
// code end.
}
BZOJ #5457: 城市 [线段树合并]的更多相关文章
- BZOJ:5457: 城市(线段树合并)(尚待优化)
5457: 城市 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 18 Solved: 12[Submit][Status][Discuss] Des ...
- BZOJ 4530 LCT/线段树合并
//By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using nam ...
- 线段树合并 || BZOJ 5457: 城市
题面:https://www.lydsy.com/JudgeOnline/problem.php?id=5457 题解: 线段树合并,对于每个节点维护sum(以该节点为根的子树中最大的种类和)和kin ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- BZOJ.4399.魔法少女LJJ(线段树合并)
BZOJ 注意\(c\leq7\)→_→ 然后就是裸的权值线段树+线段树合并了. 对于取\(\max/\min\)操作可以直接区间修改清空超出范围的值,然后更新到对应位置上就行了(比如对\(v\)取\ ...
- BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...
- BZOJ.3307.雨天的尾巴(dsu on tree/线段树合并)
BZOJ 洛谷 \(dsu\ on\ tree\).(线段树合并的做法也挺显然不写了) 如果没写过\(dsu\)可以看这里. 对修改操作做一下差分放到对应点上,就成了求每个点子树内出现次数最多的颜色, ...
- BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)
BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...
- BZOJ.5417.[NOI2018]你的名字(后缀自动机 线段树合并)
LOJ 洛谷 BZOJ 考虑\(l=1,r=|S|\)的情况: 对\(S\)串建SAM,\(T\)在上面匹配,可以得到每个位置\(i\)的后缀的最长匹配长度\(mx[i]\). 因为要去重,对\(T\ ...
随机推荐
- 17、Wireless
1. WLAN在物理层采用的是无线电 i. wlan采用csma/ca代替lan的csma/cd ii. 工作在半双工模式,共享带宽(无法在发送的同时接收信号) 2. WLAN会遇到的问题 ...
- 搭建一个V 2ray的方法
VPS构建VPN教程 (由于博客限制有些敏感词 V 2ray中间会打空格或者(删掉我)图片中的敏感词进行了马赛克处理) 关于自建VPN翻墙教程,此处是利用V 2 ray的一个VPS搭建VPN教程.便于 ...
- 剑指offer刷题笔记
删除链表中重复的结点:较难 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4- ...
- 基于 H5和 3D WebVR 的可视化虚拟现实培训系统
前言 2019 年 VR, AR, XR, 5G, 工业互联网等名词频繁出现在我们的视野中,信息的分享与虚实的结合已经成为大势所趋,5G 是新一代信息通信技术升级的重要方向,工业互联网是制造业转型升级 ...
- c++中的智能指针怎样释放连续的资源?
以前学智能指针时有点想当然了,一直以为智能指针很智能,不管你让它管理的是单个资源还是连续的资源它都能正确的将资源释放,现在发现自己大错特错. 先看代码: #include <iostream&g ...
- 【TensorFlow】TensorFlow基础 —— 模型的保存读取与可视化方法总结
TensorFlow提供了一个用于保存模型的工具以及一个可视化方案 这里使用的TensorFlow为1.3.0版本 一.保存模型数据 模型数据以文件的形式保存到本地: 使用神经网络模型进行大数据量和复 ...
- Github 小白简单教学
Git和Github简单教程 原文链接:Git和Github简单教程 网络上关于Git和GitHub的教程不少,但是这些教程有的命令太少不够用,有的命令太多,使得初期学习的时候需要额外花不少时间在 ...
- Rip 动态路由协议
路由信息协议(RIP) 是内部网关协议IGP中最先得到广泛使用的协议. Routing Information Protocol) RIP是一种分布式的基于距离矢量的路由 ...
- springboot 基于Tomcate的自启动流程
Springboot 内置了Tomcat的容器,我们今天来说一下Springboot的自启动流程. 一.Spring通过注解导入Bean大体可分为四种方式,我们主要来说以下Import的两种实现方法: ...
- 杭电-------2042不容易系列之二(C语言写)
/* 根据题意,知道了最终只剩下了3只羊,应该是从最后一步向前推算,但是因为题意的测试布置一个 可以从只有一个收费站算起,知道本次需要就算的收费站,这样之后有小于此数目的可以直接输出, 大于此数目的也 ...