【笔记】机器学习 - 李宏毅 - 9 - Keras Demo
3.1 configuration
3.2 寻找最优网络参数
代码示例:
# 1.Step 1
model = Sequential()
model.add(Dense(input_dim=28*28, output_dim=500)) # Dense是全连接
model.add(Activation('sigmoid'))
model.add(Dense(output_dim=500))
model.add(Activation('sigmoid'))
model.add(Dense(output_dim=10))
model.add(Activation('softmax'))
# Step 2
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Step 3
model.fit(x_train, y_train, batch_size=100, nb_epoch=20)
# 模型保存
#case1:测试集正确率
score = model.evaluate(x_test,y_test)
print("Total loss on Testing Set:", score[0])
print("Accuracy of Testing Set:", score[1])
#case2:模型预测
result = model.predict(x_test)
Keras 2.0 代码类似
# 创建网络
model=Sequential()
model.add(Dense(input_dim=28*28,units=500,activation='relu'))
model.add(Dense(units=500,activation='relu'))
model.add(Dense(units=10,activation='softmax'))
# 配置
model.compile(loss='categorical crossentropy',optimizer='adam',metrics=['accuracy'])
# 选择最好的方程
model.fit(x_train,y_train,batch_size=100,epochs=20)
# 使用模型
score = model.evaluate(x_test,y_test)
print('Total loss on Testiong Set : ',score[0])
print('Accuracy of Testiong Set : ',score[1])
# 上线后预测
result = model.predict(x_test)
x_train, y_train解释

小批量梯度下降,速度更快的原因是因为可以并行计算。


完整的Keras演示:
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense,Dropout,Activation
from keras.optimizers import SGD,Adam
from keras.utils import np_utils
from keras.datasets import mnist
def load_data():
    (x_train,y_train),(x_test,y_test)=mnist.load_data()
    number=10000
    x_train=x_train[0:number]
    y_train=y_train[0:number]
    x_train=x_train.reshape(number,28*28)
    x_test=x_test.reshape(x_test.shape[0],28*28)
    x_train=x_train.astype('float32')
    x_test=x_test.astype('float32')
    y_train=np_utils.to_categorical(y_train,10)
    y_test=np_utils.to_categorical(y_test,10)
    x_train=x_train
    x_test=x_test
    x_train=x_train/255
    x_test=x_test/255
    return (x_train,y_train),(x_test,y_test)
(x_train,y_train),(x_test,y_test)=load_data()
model=Sequential()
model.add(Dense(input_dim=28*28,units=633,activation='sigmoid'))
model.add(Dense(units=633,activation='sigmoid'))
model.add(Dense(units=633,activation='sigmoid'))
model.add(Dense(units=10,activation='softmax'))
model.compile(loss='mse',optimizer=SGD(lr=0.1),metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=100,epochs=20)
result= model.evaluate(x_test,y_test)
print('TEST ACC:',result[1])
运行结果:
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
11493376/11490434 [==============================] - 21s 2us/step
Epoch 1/20
10000/10000 [==============================] - 3s 342us/step - loss: 0.0905 - acc: 0.1042
Epoch 2/20
10000/10000 [==============================] - 3s 292us/step - loss: 0.0900 - acc: 0.1043
Epoch 3/20
10000/10000 [==============================] - 3s 278us/step - loss: 0.0900 - acc: 0.1096
Epoch 4/20
10000/10000 [==============================] - 3s 284us/step - loss: 0.0900 - acc: 0.1133
Epoch 5/20
10000/10000 [==============================] - 3s 290us/step - loss: 0.0900 - acc: 0.1105
Epoch 6/20
10000/10000 [==============================] - 3s 286us/step - loss: 0.0900 - acc: 0.1120
Epoch 7/20
10000/10000 [==============================] - 3s 316us/step - loss: 0.0900 - acc: 0.1098
Epoch 8/20
10000/10000 [==============================] - 3s 306us/step - loss: 0.0900 - acc: 0.1117
Epoch 9/20
10000/10000 [==============================] - 3s 294us/step - loss: 0.0900 - acc: 0.1102
Epoch 10/20
10000/10000 [==============================] - 3s 296us/step - loss: 0.0899 - acc: 0.1129
Epoch 11/20
10000/10000 [==============================] - 3s 334us/step - loss: 0.0899 - acc: 0.1153
Epoch 12/20
10000/10000 [==============================] - 3s 307us/step - loss: 0.0899 - acc: 0.1141
Epoch 13/20
10000/10000 [==============================] - 4s 351us/step - loss: 0.0899 - acc: 0.1137 0s - loss: 0.089
Epoch 14/20
10000/10000 [==============================] - 3s 321us/step - loss: 0.0899 - acc: 0.1157
Epoch 15/20
10000/10000 [==============================] - 3s 302us/step - loss: 0.0899 - acc: 0.1156
Epoch 16/20
10000/10000 [==============================] - 3s 323us/step - loss: 0.0899 - acc: 0.1159 1s -
Epoch 17/20
10000/10000 [==============================] - 3s 331us/step - loss: 0.0899 - acc: 0.1141
Epoch 18/20
10000/10000 [==============================] - 3s 299us/step - loss: 0.0899 - acc: 0.1234
Epoch 19/20
10000/10000 [==============================] - 3s 316us/step - loss: 0.0899 - acc: 0.1143
Epoch 20/20
10000/10000 [==============================] - 3s 337us/step - loss: 0.0899 - acc: 0.1236
10000/10000 [==============================] - 2s 246us/step
TEST ACC: 0.1028
可以调一下units的参数值,可以再多加几层,尝试一下效果并不是很好,之后章节会对这个代码进行优化。
【笔记】机器学习 - 李宏毅 - 9 - Keras Demo的更多相关文章
- 【笔记】机器学习 - 李宏毅 - 11 - Keras Demo2 & Fizz Buzz
		
1. Keras Demo2 前节的Keras Demo代码: import numpy as np from keras.models import Sequential from keras.la ...
 - 【笔记】机器学习 - 李宏毅 - 2 - Regression + Demo
		
Regression 回归 应用领域包括:Stock Market Forecast, Self-driving car, Recommondation,... Step 1: Model 对于宝可梦 ...
 - 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗
		
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...
 - Python机器学习笔记:深入理解Keras中序贯模型和函数模型
		
先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: skl ...
 - Python机器学习笔记:深入学习Keras中Sequential模型及方法
		
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷 ...
 - 机器学习笔记P1(李宏毅2019)
		
该博客将介绍机器学习课程by李宏毅的前两个章节:概述和回归. 视屏链接1-Introduction 视屏链接2-Regression 该课程将要介绍的内容如下所示: 从最左上角开始看: Regress ...
 - 【笔记】机器学习 - 李宏毅 - 12 - CNN
		
Convolutional Neural Network CNN 卷积神经网络 1. 为什么要用CNN? CNN一般都是用来做图像识别的,当然其他的神经网络也可以做,也就是输入一张图的像素数组(pix ...
 - 【笔记】机器学习 - 李宏毅 - 10 - Tips for Training DNN
		
神经网络的表现 在Training Set上表现不好 ----> 可能陷入局部最优 在Testing Set上表现不好 -----> Overfitting 过拟合 虽然在机器学习中,很容 ...
 - 【笔记】机器学习 - 李宏毅 - 5 - Classification
		
Classification: Probabilistic Generative Model 分类:概率生成模型 如果说对于分类问题用回归的方法硬解,也就是说,将其连续化.比如 \(Class 1\) ...
 
随机推荐
- 如何在国内下载Eclipse及其插件
			
北京理工大学 http://mirror.bit.edu.cn/eclipse/ 中国科学技术大学 http://mirrors.ustc.edu.cn/eclipse/ 大连东软信息学院 http: ...
 - python 异常之进阶操作
			
1.文件分析 下面来做一些文件分析操作,分析整本书的信息. 知识点: string.split():将字符串分解为列表. open(filename,‘rb’)或者open(filename,enco ...
 - CSS绝对定位absolute详解
			
转:https://www.jianshu.com/p/a3da5e27d22b 之前介绍过CSS浮动float详解,本篇介绍的绝对定位absolute和浮动float有部分相似性.如果能理解 ...
 - ncbi-blast 本地安装
			
详见:http://blog.shenwei.me/local-blast-installation/ Linux系统中NCBI BLAST+本地化教程 本文面向初学者(最好还是懂得基本的linux使 ...
 - HDU_1495_模拟
			
http://acm.split.hdu.edu.cn/showproblem.php?pid=1495 自己用模拟写的,先除以三个数的最大公约数,弱可乐为奇数,则无解,然后开始模拟. 利用大杯子和小 ...
 - Expect & Shell: 网络设备配置备份
			
1. 环境介绍及效果展示 A. centos 6.6 x64 B. tftp-server 0.49 C. 脚本目录 D. 备份目录 E. 备份邮件 2. tftp服务配置 A. [root@step ...
 - 一起了解 .Net Foundation 项目 No.1
			
.Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. Akka.NET Akka ...
 - 动手学习pytorch——(2)softmax和分类模型
			
内容太多,捡重要的讲. 在分类问题中,通常用离散的数值表示类别,这里存在两个问题.1.输出值的范围不确定,很难判断值的意义.2.真实标签是离散值,这些离散值与不确定的范围的输出值之间的误差难以衡量. ...
 - zabbix流量过大就断图
			
监控内网千兆交换机,流量图断断续续,大概位于400-500兆就会断图,而且还不准. 按照这个操作几乎可以成功 链接:http://itfish.net/article/23536.html h ...
 - PHP 安装扩展步骤
			
一般来说php安装扩展需要几下几个步骤 1.下载扩展包 比如 pdo_mysql.tar.gz (如果不想下载,可以到php安装目录,(类似php-5.3.3/ext/)的ext文件中找 ...