题意:

  一条路上有 $n$ 个地雷,YYF 从位置 $1$ 出发,走一步的概率为 $p$,走两步的概率是 $(1-p)$。求 YYF 能顺利通过这条路的概率。

数据范围: $1\leq n \leq 10$,$0.25\leq p\leq 0.75$,输入的 $n$ 个位置的范围:$[1,1e8]$

分析:

  从前往后推,状态转移方程:$dp[i]=dp[i-1]*p+dp[i-2]*(1-p)$,其中 $dp[1]=1$,有地雷的位置 $dp[i]=0$。如果直接算,必然超时,可以用矩阵快速幂分段优化。

坑点:输入的 $n$ 个位置不一定有序。

代码:

 #include <cstdio>
 #include <cstring>
 #include <iostream>
 #include <algorithm>
 using namespace std;
 ];
 double p;
 struct matrix
 {
     ][];
     void clc()
     {
         ;i<;i++)
             ;j<;j++)
                 mat[i][j]=;
     }
     void eye()
     {
         ;i<=;i++)
             mat[i][i]=;
     }
     matrix operator *(const matrix b)const
     {
         matrix res;
         res.clc();
         ;i<=;i++)
         {
             ;k<=;k++)
             {
                 ;j<=;j++)
                     res.mat[i][j]=(res.mat[i][j]+mat[i][k]*b.mat[k][j]);
             }
         }
         return res;
     }
 };
 matrix mpow(matrix a,int b)
 {
     matrix res;
     res.clc();
     res.eye();
     while(b)
     {
         )
             res=res*a;
         a=a*a;
         b>>=;
     }
     return res;
 }
 void init(matrix &a)
 {
     a.clc();
     a.mat[][]=;
 }
 void init2(matrix &b)
 {
     b.clc();
     b.mat[][]=p;
     b.mat[][]=;
     b.mat[][]=-p;
 }
 int main()
 {
     int n,x,last;
     while(scanf("%d%lf",&n,&p)!=EOF)
     {
         ;i<=n;i++)
             scanf("%d",&a[i]);
         sort(a+,a++n);
         matrix A,B;
         init(A);
         init2(B);
         ;
         last=;
         ;i<=n;i++)
         {
             A=A*mpow(B,a[i]-last);//cout<<"A="<<A.mat[1][2]<<endl;
             A.mat[][]=;
             last=a[];
         }
         A=A*B;
         printf(][]);
     }
     ;
 }

Scout YYF I POJ - 3744【矩阵乘法优化求概率】的更多相关文章

  1. Scout YYF I POJ - 3744(矩阵优化)

    题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...

  2. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  3. Scout YYF I POJ - 3744(概率dp)

    Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  4. 概率dp(A - Scout YYF I POJ - 3744 )

    题目链接:https://cn.vjudge.net/contest/276241#problem/A 题目大意:首先输入n和p,n代表地雷的个数,p代表走一步的概率,1-p代表走两步的概率,然后问你 ...

  5. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  6. [转]OpenBLAS项目与矩阵乘法优化

    课程内容 OpenBLAS项目介绍 矩阵乘法优化算法 一步步调优实现 以下为公开课完整视频,共64分钟: 以下为公开课内容的文字及 PPT 整理. 雷锋网的朋友们大家好,我是张先轶,今天主要介绍一下我 ...

  7. 【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化

    挺好的数位dp……先说一下我个人的做法:经过观察,发现这题按照以往的思路从后往前递增,不怎么好推,然后我就大胆猜想,从前往后推,发现很好推啊,维护四个变量,从开始位置到现在有了i个数 f[i]:所有数 ...

  8. bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)

    为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...

  9. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

随机推荐

  1. Python多重继承之菱形继承

    继承是面向对象编程的一个重要的方式,通过继承,子类就可以扩展父类的功能.在python中一个类能继承自不止一个父类,这叫做python的多重继承(Multiple Inheritance ). 语法 ...

  2. GDI+如何判断一个点是否在区域内

    https://msdn.microsoft.com/en-us/library/windows/desktop/ms533826(v=vs.85).aspx The purpose of hit t ...

  3. jsp操作mysql样例

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  4. Codeforces_714

    A.相遇时间段l = max(l1,l2),r = min(r1,r2),再判断k是否在里面. #include <iostream> using namespace std; long ...

  5. JDBCTemplate初学简介

    JDBCTemplate JdbcTemplate是Spring的一部分,是对数据库的操作在jdbc的封装,处理了资源的建立和释放(不需要我们管理连接了),我们只需要提供SQL语句(不需要我们设置参数 ...

  6. MySQL中遍历查询结果的常用API(c)

    本中所使用的table: MySQL中的错误处理函数 unsigned int mysql_errno(MYSQL *mysql) const char *mysql_error(MYSQL *mys ...

  7. 【OpenGL】GL_DEPTH_TEST深度测试问题

    记录一个深度测试的问题 在实现一个简单的OpenGL程序时,遇到了一个问题,深度测试总是有问题,无法正常显示,如下 正常情况为 通过调试发现屏幕空间中的所有深度值均为1. OpenGL代码如下: vo ...

  8. Yandex Big Data Essentials Week1 Unix Command Line Interface Processes managing

    free displays the total amount of free and used memory free [options] top provides a dynamic real-ti ...

  9. Android O 8.0 奥利奥

    Android O 8.0 奥利奥 1.画中画, 2.智能文本选择(Smart Text Selection), 3.notification dots, 4.自动填写(Auto-Fill)   4. ...

  10. [Python]获取字典所有值

    方法一:Key Value 直接获取 databases = {1: 'Student', 2: 'School'} for k,v in databases.items(): print(k,v) ...