环境
  虚拟机:VMware 10
  Linux版本:CentOS-6.5-x86_64
  客户端:Xshell4
  FTP:Xftp4
  jdk8
  hadoop-3.1.1

伪分布式:HDFS和YARN 伪分布式搭建,事先启动HDFS和YARN

第一步:开发WordCount示例

package test.mr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MyWC { public static void main(String[] args) {
Configuration conf = new Configuration();
try {
Job job = Job.getInstance(conf,"word count");
job.setJarByClass(MyWC.class); job.setMapperClass(WordMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setReducerClass(WordReducer.class);
job.setNumReduceTasks(1); // FileInputFormat.addInputPath(job, new Path("hdfs://node1:9820/wjy/input/text.txt"));
// Path output = new Path("hdfs://node1:9820/wjy/output/"); //注意这里设置的目录是从 HDFS根目录开始的
FileInputFormat.addInputPath(job, new Path("/wjy/input/text.txt"));
Path output = new Path("/wjy/output/");
if (output.getFileSystem(conf).exists(output))
{
output.getFileSystem(conf).delete(output,true);
}
FileOutputFormat.setOutputPath(job, output); System.exit(job.waitForCompletion(true) ? 0 : 1);
} catch (Exception e) {
e.printStackTrace();
}
} }
package test.mr;

import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class WordMapper extends Mapper<LongWritable, Text, Text, IntWritable> { // 写在外面 map循环创建会造成内存溢出
private final static IntWritable one = new IntWritable(1);
// map写出的数据放到buffer字节数组里 这样word可以继续使用 没有影响
private Text word = new Text(); @Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
//StringTokenizer 默认按照空格 制表符 回车等空白符作为分隔符来切分传入的数据
StringTokenizer st = new StringTokenizer(value.toString());
while (st.hasMoreTokens()) {
word.set(st.nextToken());
context.write(word, one);
}
}
}
package test.mr;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); @Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
//key:hello
//values:(1,1,1,1,1,1)
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
} }

第二步:程序打jar包:MyWC.jar,上传jar和测试文件

[root@node1 ~]# ls
MyWC.jar text.txt
[root@node1 ~]# hdfs dfs -mkdir /wjy/input
[root@node1 ~]# hdfs dfs -mkdir /wjy/output
[root@node1 ~]# hdfs dfs -put /root/text.txt /wjy/input

text.txt文件里面是测试数据:

hello sxt 1

hello sxt 2

hello sxt 3

...

hello sxt 1000000

第三步:运行jar:MyWC.jar

[root@node1 ~]# hadoop jar MyWC.jar test.mr.MyWC
-- ::, WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
-- ::, INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:
-- ::, WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
-- ::, INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1547546637762_0003
-- ::, INFO input.FileInputFormat: Total input files to process :
-- ::, INFO mapreduce.JobSubmitter: number of splits:
-- ::, INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
-- ::, INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1547546637762_0003
-- ::, INFO mapreduce.JobSubmitter: Executing with tokens: []
-- ::, INFO conf.Configuration: resource-types.xml not found
-- ::, INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
-- ::, INFO impl.YarnClientImpl: Submitted application application_1547546637762_0003
-- ::, INFO mapreduce.Job: The url to track the job: http://node1:8088/proxy/application_1547546637762_0003/
-- ::, INFO mapreduce.Job: Running job: job_1547546637762_0003
-- ::, INFO mapreduce.Job: Job job_1547546637762_0003 running in uber mode : false
-- ::, INFO mapreduce.Job: map % reduce %
-- ::, INFO mapreduce.Job: map % reduce %
-- ::, INFO mapreduce.Job: map % reduce %
-- ::, INFO mapreduce.Job: map % reduce %
-- ::, INFO mapreduce.Job: map % reduce %
-- ::, INFO mapreduce.Job: Job job_1547546637762_0003 completed successfully
-- ::, INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Peak Map Physical memory (bytes)=
Peak Map Virtual memory (bytes)=
Peak Reduce Physical memory (bytes)=
Peak Reduce Virtual memory (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

第四步:查看下载处理结果

[root@node1 sbin]# hdfs dfs -ls /wjy/output
-- ::, WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found items
-rw-r--r-- 1 root supergroup 0 2019-01-15 19:13 /wjy/output/_SUCCESS
-rw-r--r-- 1 root supergroup 8888922 2019-01-15 19:13 /wjy/output/part-r-00000 [root@node1 ~]# hdfs dfs -get /wjy/output/part-r-00000 ./
[root@node1 ~]# vi part-r- hello
sxt

问题1:
[2019-01-15 17:08:05.159]Container killed on request. Exit code is 143
[2019-01-15 17:08:05.182]Container exited with a non-zero exit code 143.
2019-01-15 17:08:20,957 INFO mapreduce.Job: Task Id : attempt_1547542193692_0003_m_000000_2, Status : FAILED
[2019-01-15 17:08:18.963]Container [pid=4064,containerID=container_1547542193692_0003_01_000004] is running 210352640B beyond the 'VIRTUAL' memory limit. Current usage: 26.0 MB of 1 GB physical memory used; 2.3 GB of 2.1 GB virtual memory used. Killing container.

原因:申请内存过大而被终止
解决措施:取消内存检查
配置:yarn-site.xml

<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
<description>Whether virtual memory limits will be enforced for containers</description>
</property>

问题2:
2019-01-15 18:51:11,229 INFO mapred.ClientServiceDelegate: Application state is completed. FinalApplicationStatus=SUCCEEDED. Redirecting to job history server
2019-01-15 18:51:12,237 INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:10020. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS)
java.io.IOException: java.net.ConnectException: Your endpoint configuration is wrong; For more details see: http://wiki.apache.org/hadoop/UnsetHostnameOrPort
原因:由于没有启动historyserver引起的
解决办法:
在mapred-site.xml配置文件中添加

<property>
<name>mapreduce.jobhistory.address</name>
<value>node1:10020</value>
</property>

在namenode上执行命令:mr-jobhistory-daemon.sh start historyserver 
这样在,namenode上会启动JobHistoryServer服务,可以在historyserver的日志中查看运行情况

问题3:

-- ::, WARN hdfs.DataStreamer: Caught exception
java.lang.InterruptedException
at java.lang.Object.wait(Native Method)
at java.lang.Thread.join(Thread.java:)
at java.lang.Thread.join(Thread.java:)
at org.apache.hadoop.hdfs.DataStreamer.closeResponder(DataStreamer.java:)
at org.apache.hadoop.hdfs.DataStreamer.endBlock(DataStreamer.java:)
at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:)

这个网上有说是BUG,也有说是没有按照hadoop约定的规则创建HDFS目录,

对于上传块目录:

格式:hdfs dfs -mkdir -p /user/input

比如使用root用户登录,则创建目录应为:hdfs dfs -mkdir -p /root/input

【Hadoop学习之八】MapReduce开发的更多相关文章

  1. hadoop学习(七)----mapReduce原理以及操作过程

    前面我们使用HDFS进行了相关的操作,也了解了HDFS的原理和机制,有了分布式文件系统我们如何去处理文件呢,这就的提到hadoop的第二个组成部分-MapReduce. MapReduce充分借鉴了分 ...

  2. Hadoop学习笔记—MapReduce的理解

    我不喜欢照搬书上的东西,我觉得那样写个blog没多大意义,不如直接把那本书那一页告诉大家,来得省事.我喜欢将我自己的理解.所以我会说说我对于Hadoop对大量数据进行处理的理解.如果有理解不对欢迎批评 ...

  3. Hadoop学习之Mapreduce执行过程详解

    一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: ...

  4. 【尚学堂·Hadoop学习】MapReduce案例2--好友推荐

    案例描述 根据好友列表,推荐好友的好友 数据集 tom hello hadoop cat world hadoop hello hive cat tom hive mr hive hello hive ...

  5. 【尚学堂·Hadoop学习】MapReduce案例1--天气

    案例描述 找出每个月气温最高的2天 数据集 -- :: 34c -- :: 38c -- :: 36c -- :: 32c -- :: 37c -- :: 23c -- :: 41c -- :: 27 ...

  6. hadoop学习day3 mapreduce笔记

    1.对于要处理的文件集合会根据设定大小将文件分块,每个文件分成多块,不是把所有文件合并再根据大小分块,每个文件的最后一块都可能比设定的大小要小 块大小128m a.txt 120m 1个块 b.txt ...

  7. Hadoop学习(3)-mapreduce快速入门加yarn的安装

    mapreduce是一个运算框架,让多台机器进行并行进行运算, 他把所有的计算都分为两个阶段,一个是map阶段,一个是reduce阶段 map阶段:读取hdfs中的文件,分给多个机器上的maptask ...

  8. Hadoop学习(4)-mapreduce的一些注意事项

    关于mapreduce的一些注意细节 如果把mapreduce程序打包放到了liux下去运行, 命令java  –cp  xxx.jar 主类名 如果报错了,说明是缺少相关的依赖jar包 用命令had ...

  9. Hadoop 学习之MapReduce

    MapReduce充分利用了分而治之,主要就是将一个数据量比较大的作业拆分为多个小作业的框架,而用户需要做的就是决定拆成多少份,以及定义作业本身,用户所要做的操作少了又少,真是Very Good! 一 ...

随机推荐

  1. filter的基本介绍和使用

    简介 过滤器是处在客户端和服务器资源之间的一到过滤网,我们可以根据具体的需求来对请求头和数据就行预处理,也可以对响应头和和数据进行后处理.例如Jsp, Servlet, 静态图片文件或静态 html ...

  2. redis的基本介绍

    redis是什么? redis是一种菲关系型数据库,存储key-value类型的数据. redis支持的数据类型 这里所说的数据类型其实就是value对应的数据类型.一共有五种: String 1.S ...

  3. Frps 家庭服务器访问解决方案

    100.64.0.0/10运营商级(Carrier-grade)NAT保留IP地址   在一次跟踪路由的网络操作时发现自己路由器下一跳路由节点的IP地址比较奇怪,是100.64.0.1.好奇促使我查询 ...

  4. MongoDB与关系型数据库 区别

    mysql  mongodb 表     table    Collection 字段  Colum   Fields 行 row Document Mongo中的一些概念 ------------- ...

  5. 转发(forward)和重定向(redirect)

    转发和重定向 参考:http://www.2cto.com/kf/201107/97118.html 以前写的一个注册页面: package com.ifly.bbs.controller; impo ...

  6. Windows 下MySql Replication(复制)配置

    环境准备 到官网下载mysql-installer-web-community-5.7.21.0.msi并安装,选择MySql Workbench,记录安装时root输入的密码. 需要安装在两台机器上 ...

  7. asp.net几个重要对象

    DataSet是用来做连接sql的一种方法,意思是把数据库的副本存在应用程序里,应用程序开始运行时,把数据库相关数据保存到DataSet.DataTable表示内存中数据的一个表.常和DefaultV ...

  8. linux curl命令如何上传本地文件夹和下载文件

    本地有一个文件夹为my_dir,里面有四个文件,分别是test1.txt,user_account,tools_user,plans 要把这个my_dir文件夹传到ftp 192.168.8.251 ...

  9. JAVA代码(GET方式)请求URL(HTTP,HTTPS)

    /** * * @param url 这个只支持http地址,不支持https * @param request * @return */ public static String sendMessa ...

  10. jmeter 发送加密请求 beanshell断言 线程组间传递参数

    原文地址https://www.cnblogs.com/wnfindbug/p/5817038.html 最近在做http加密接口,请求头的uid参数及body的请求json参数都经过加密再发送请求, ...