Cow Relays
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions:9207   Accepted: 3604

Description

For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi  ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

Input

* Line 1: Four space-separated integers: NTS, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

Output

* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

Sample Input

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

Sample Output

10

Source

题意:

在一个图上求从$S$到$E$的,刚好经过$n$条边的最短路径长。

思路:

没想到最短路的题目还可以用快速幂。也没想到快速幂还可以这么写。

这道题边最多是100条,所以可以先把点离散化。离散化后点的编号最大是$node_cnt$

最初的矩阵$G[i,j]$中存储的其实是从$i$经过一条边到达$j$的最短路

那么$G^{(2)}[i, j] = \min_{1\leq k\leq node_cnt}{G[i, k] + G[k, j]}$就可以表示从$i$经过两条边到达$j$的最短路

如果矩阵$G^{(m)}$表示任意两点之间恰好经过$m$条边的最短路,那么

$G^{(r+m)}[i, j] = \min_{1\leq k\leq node_cnt}{G^{(r)}[i, k] + G^{(m)}[k, j]}$

这就可以使用快速幂进行递推了。只需要把$matrix$的乘法操作中,$+=$变成$\min$, $*$变成$+$

注意矩阵要初始化为$+\infty$

 #include<iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<set>
#include<climits>
#include<map>
using namespace std;
typedef long long LL;
#define N 100010
#define pi 3.1415926535
#define inf 0x3f3f3f3f int n, t, S, E;
const int maxn = ;
int node_cnt;
struct matrix{
int m[maxn][maxn];
//int m_size;
matrix operator *(const matrix &b)const{
matrix ret;
memset(ret.m, 0x3f, sizeof(ret.m));
for(int i = ; i <= node_cnt; i++){
for(int j = ; j <= node_cnt; j++){
//ret.m[i][j] = inf;
for(int k = ; k <= node_cnt; k++){
ret.m[i][j] = min(m[i][k] + b.m[k][j], ret.m[i][j]);
}
}
}
return ret;
}
}g;
//int g[maxn][maxn];
struct edge{
int u, v, length;
}e[];
set<int>nodes;
set<int>::iterator set_it;
map<int, int>node_mp; matrix ksm(matrix a, int x)
{
matrix ret, k;
k = a;
ret = a;
x--;
while(x){
if(x & ){
ret = ret * k;
}
x >>= ;
k = k * k;
}
return ret;
} int main()
{
while(scanf("%d%d%d%d", &n, &t, &S, &E) != EOF){
for(int i = ; i < t; i++){
scanf("%d%d%d", &e[i].length, &e[i].u, &e[i].v);
nodes.insert(e[i].u);
nodes.insert(e[i].v);
} node_cnt = ;
for(set_it = nodes.begin(); set_it != nodes.end(); set_it++){
node_mp[*set_it] = ++node_cnt;
}
//g.m_size = node_cnt;
memset(g.m, 0x3f, sizeof(g.m));
for(int i = ; i < t; i++){
int u = e[i].u, v = e[i].v;
g.m[node_mp[u]][node_mp[v]] = e[i].length;
g.m[node_mp[v]][node_mp[u]] = e[i].length;
}
/*for(int i = 1; i <= node_cnt; i++){
for(int j = 1; j <= node_cnt; j++){
cout<<g.m[i][j]<<" ";
}
cout<<endl;
}*/ matrix ans = ksm(g, n);
//cout<<node_mp[S]<<" "<<node_mp[E]<<endl;
printf("%d\n", ans.m[node_mp[S]][node_mp[E]]);
}
return ;
}

poj3613 Cow Relays【好题】【最短路】【快速幂】的更多相关文章

  1. Cow Relays POJ - 3613 (floyd+快速幂)

    For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race usin ...

  2. POJ3613 Cow Relays(矩阵快速幂)

    题目大概要求从起点到终点恰好经过k条边的最短路. 离散数学告诉我们邻接矩阵的k次幂就能得出恰好经过k条路的信息,比如POJ2778. 这题也一样,矩阵的幂运算定义成min,而min满足结合律,所以可以 ...

  3. [POJ3613] Cow Relays(Floyd+矩阵快速幂)

    解题报告 感觉这道题gyz大佬以前好像讲过一道差不多的?然鹅我这个蒟蒻发现矩阵快速幂已经全被我还给老师了...又恶补了一遍,真是恶臭啊. 题意 给定一个T(2 <= T <= 100)条边 ...

  4. POJ3613 Cow Relays [矩阵乘法 floyd类似]

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7335   Accepted: 2878 Descri ...

  5. 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays

    图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...

  6. 【POJ3613 Cow Relays】(广义矩阵乘法)

    题目链接 先离散化,假设有\(P\)个点 定义矩阵\(A_{ij}\)表示\(i\)到\(j\)只经过一条边的最短路,\[{(A^{a+b})_{ij}=\min_{1\le k\le p} \{ ( ...

  7. [POJ3613] Cow Relays

    link 题目大意 给你一个含有边权的无向图,问从$S$到$T$经过$N$条边的最小花费. 试题分析 我们可以很容易推导$dp$方程,$dp(k,i,j)$表示经过$k$条边从$i$到$j$的最小花费 ...

  8. (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。

    In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...

  9. E题:Water Problem(快速幂模板)

    题目大意:原题链接  题解链接 解题思路:令x=x-1代入原等式得到新的等式,两式相加,将sin()部分抵消掉,得到只含有f(x)的状态转移方程f(x+1)=f(x)+f(x-2)+f(x-3),然后 ...

随机推荐

  1. gitlab Docker容器创建命令以及从容器中备份gitlab仓库示例

    Gitlab容器启动命令: docker run -d --name gitlab --publish : --publish : --hostname gitlab-server --volume ...

  2. 【Windows】Dos中的日期的和时间

    在Dos中,我们可以通过动态变量DATE来取得当前日期,通过动态变量TIME来取得当前日期.实例1 C:\Users\hubin5>echo %date% 2013/03/11 周一 C:\Us ...

  3. Fluent动网格【1】:概述

    最近总有小伙伴向我询问Fluent中的动网格问题,因此决定做一期关于Fluent动网格技术的内容. 动网格技术在流体仿真中很特殊,应用也很广.生活中能够碰到形形色色的包含有部件运动的问题,比如说我现在 ...

  4. Fluent UDF【8】:编译型UDF

    UDF除了可以以解释的方式外,其还可以以编译的方式被Fluent加载.解释型UDF只能使用部分C语言功能,而编译型UDF则可以全面使用C语言的所有功能. 1 编译型UDF介绍 编译型UDF的构建方式与 ...

  5. [APM] OneAPM 云监控部署与试用体验

    摘要: 作为 Zabbix 骨灰级粉丝,一直以来对第三方监控(APM)都是拒绝的.一来觉得收费,二来担心数据被人所知,三来觉得 Zabbix 牛逼到无可取代.但是,随着 APM 市场的火爆,我决定「放 ...

  6. JAVA(六)数据库/网络编程/新IO

    成鹏致远 | lcw.cnblog.com |2014-02-05 数据库 1.JDBC概述 JDBC(Java Database Connectivity,Java数据库连接)提供了一种与平台无关的 ...

  7. 实现div里的img图片水平垂直居中

    body结构 <body> <div> <img src="1.jpg" alt="haha"> </div> ...

  8. 【iCore4 双核心板_ARM】例程十:RTC实时时钟实验——显示时间和日期

    实验现象: 核心代码: int main(void) { /* USER CODE BEGIN 1 */ RTC_TimeTypeDef sTime; RTC_DateTypeDef sDate; ; ...

  9. java反编译工具(Java Decompiler)

    1,下载地址,包括GUI,Eclipse插件 http://jd.benow.ca/ 2,Eclipse插件的安装参看 https://blog.csdn.net/yh_zeng2/article/d ...

  10. ipv6禁用导致rpcbind服务启动失败实例

    ipv6禁用导致rpcbind服务启动失败实例     昨天在做服务器磁盘分区扩容的时候出现过一个服务启动的问题,在此记录.情景再现:前天晚上申请做磁盘扩容,得到批准后,昨天早上5点开始做停机调整维护 ...