题目链接:洛谷

题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$。

数据范围:$n\leq 10^7,m\leq 10^5,S\leq 150,0\leq W_i\leq 1004535808$

首先是要推式子的。

首先我们知道,出现次数恰为$S$次的至多$up=\min(m,\frac{n}{S})$种。

设恰好出现$S$次的颜色至少$i$种,则

$$f_i=C_m^i*\frac{n!}{(S!)^i(n-iS)!}*(m-i)^{n-iS}$$

这三项分别是选$i$种颜色,对现在这$i+1$种颜色(选定的$i$种和未染色的)做可重集排列,对剩下的$n-iS$个位置任意染色。

然后用容斥原理就可以得出,恰好出现$S$次的颜色正好$i$种的方案数

$$ans_i=\sum_{j=i}^{up}(-1)^{j-i}C_j^if_j$$

所以

$$\frac{ans_i}{i!}=\sum_{j=i}^{up}\frac{(-1)^{j-i}}{(j-i)!}*\frac{f_j}{j!}$$

如果你不知道如何做,把第一个数组先反转再向右平移$up$位,再把计算后的$ans_i$左移$up$位就可以了。

 #include<cstdio>
#include<algorithm>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = , G = , Gi = , mod = ;
int n, m, s, up, W[N], fac[], inv[], f[N], g[N], ans;
inline int kasumi(int a, int b){
int res = ;
while(b){
if(b & ) res = (LL) res * a % mod;
a = (LL) a * a % mod;
b >>= ;
}
return res;
}
inline void init(){
fac[] = ;
for(Rint i = ;i <= ;i ++) fac[i] = (LL) i * fac[i - ] % mod;
inv[] = inv[] = ;
for(Rint i = ;i <= ;i ++) inv[i] = (LL) inv[mod % i] * (mod - mod / i) % mod;
for(Rint i = ;i <= ;i ++) inv[i] = (LL) inv[i] * inv[i - ] % mod;
}
inline int C(int n, int m){
if(n < m) return ;
return (LL) fac[n] * inv[m] % mod * inv[n - m] % mod;
}
int rev[N];
inline void NTT(int *A, int limit, int type){
for(Rint i = ;i < limit;i ++)
if(i < rev[i]) swap(A[i], A[rev[i]]);
for(Rint mid = ;mid < limit;mid <<= ){
int Wn = kasumi(type == ? G : Gi, (mod - ) / (mid << ));
for(Rint j = ;j < limit;j += mid << ){
int w = ;
for(Rint k = ;k < mid;k ++, w = (LL) w * Wn % mod){
int x = A[j + k], y = (LL) w * A[j + k + mid] % mod;
A[j + k] = (x + y) % mod;
A[j + k + mid] = (x - y + mod) % mod;
}
}
}
if(type == -){
int inv = kasumi(limit, mod - );
for(Rint i = ;i < limit;i ++) A[i] = (LL) A[i] * inv % mod;
}
}
int main(){
scanf("%d%d%d", &n, &m, &s);
for(Rint i = ;i <= m;i ++) scanf("%d", W + i);
init(); up = min(m, n / s);
for(Rint i = ;i <= up;i ++)
f[i] = (LL) C(m, i) * fac[i] % mod * fac[n] % mod * kasumi(inv[s], i) % mod * inv[n - i * s] % mod * kasumi(m - i, n - i * s) % mod;
for(Rint i = ;i <= up;i ++)
g[i] = ((up - i) & ) ? (mod - inv[up - i]) : inv[up - i];
int limit = , L = -;
while(limit <= (up << )){limit <<= ; ++ L;}
for(Rint i = ;i < limit;i ++)
rev[i] = (rev[i >> ] >> ) | ((i & ) << L);
NTT(f, limit, ); NTT(g, limit, );
for(Rint i = ;i < limit;i ++) f[i] = (LL) f[i] * g[i] % mod;
NTT(f, limit, -);
for(Rint i = ;i <= up;i ++)
ans = (ans + (LL) W[i] * f[up + i] % mod * inv[i] % mod) % mod;
printf("%d\n", ans);
}

luogu4491

P4491 [HAOI2018]染色的更多相关文章

  1. [洛谷P4491] [HAOI2018]染色

    洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...

  2. P4491 [HAOI2018]染色 容斥+NTT

    $ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...

  3. P4491 [HAOI2018]染色 广义容斥 NTT 生成函数

    LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...

  4. luogu P4491 [HAOI2018]染色

    传送门 这一类题都要考虑推式子 首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色 ...

  5. 洛咕 P4491 [HAOI2018]染色

    显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...

  6. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  7. BZOJ 5306 [HAOI2018] 染色

    BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...

  8. 【BZOJ5306】 [Haoi2018]染色

    BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include ...

  9. 【LG4491】[HAOI2018]染色

    [LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...

随机推荐

  1. 聊聊Python中的is和==

    首先,Python中的is就是判断地址是否相等(相当于Java中的==),Python中的==就是判断数值是否相等(相当于Java中的equals). 看个简单的例子: a = [1, 2, 3] b ...

  2. 如何解决安装VMware后郑广电宽带客户端不能登录的问题?

    如何解决安装VMware后郑广电宽带客户端不能登录的问题? 问题:安装VMware后,郑广电宽带客户端不能登录,提示:“不允许代理上网”. 解决:将VMware的虚拟网卡(VMnet1和VMnet8) ...

  3. 提升linux下TCP服务器并发连接数(limit)

    https://cloud.tencent.com/developer/article/1069900 1.修改用户进程可打开文件数限制   在Linux平台上,无论编写客户端程序还是服务端程序,在进 ...

  4. [Optimization] Dynamic programming

    “就是迭代,被众人说得这么玄乎" “之所以归为优化,是因为动态规划本质是一个systemetic bruce force" “因为systemetic,所以比穷举好了许多,就认为是 ...

  5. 02工厂方法模式FactoryMethod

    一.什么是工厂方法模式 工厂方法模式同样属于类的创建型模式又被称 为多态工厂模式 .工厂方法模式的意义是定义一个创建 产品对象的工厂接口,将实际创建工作推迟到子类当中. 核心工厂类不再负责产品的创建, ...

  6. 132、Android安全机制(2) Android Permission权限控制机制(转载)

    http://blog.csdn.net/vshuang/article/details/44001661 http://www.cnblogs.com/mengdd/p/4892856.html

  7. [原]openstack-kilo--issue(九) heat stacks topology中图形无法正常显示

    本博客已经添加"打赏"功能,"打赏"位置位于右边栏红色框中,感谢您赞助的咖啡. ======声明======= 欢迎转载:转载请注明出处 http://www. ...

  8. YAML入门

    概要 YAML(是YAML Ain't Markup Language的缩写,尾音的发音类似Camel)是一种序列化数据的语言(类似json, xml),使用轻量高可读性的语法描述list, dict ...

  9. 7.11python多进程

    #!/usr/bin/env python #!--*--coding:utf-8 --*-- #!@Time :2018/7/11 19:27 #!@Author TrueNewBee import ...

  10. day_5.5 单例

    2018-5-5 15:00:25 单例 : 就是对象只有一个 ''' class main(object): __instance = None def __new__(cls,): if cls. ...