POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - POJ2891
题意概括
给出k个同余方程组:x mod ai = ri。求x的最小正值。如果不存在这样的x,那么输出-1.不满足所有的ai互质。
题解
UPD(2018-08-07):
本题做法为扩展中国剩余定理。
我写了一篇证明:链接:https://www.cnblogs.com/zhouzhendong/p/exCRT.html
代码就不要看了,很久之前写的,太丑了。
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=100005;
LL ex_gcd(LL a,LL b,LL &x,LL &y){
if (!b){
x=1,y=0;
return a;
}
LL ans=ex_gcd(b,a%b,y,x);
y-=(a/b)*x;
return ans;
}
LL m,a[N],n[N];
LL solve(){
LL a1,a2,n1,n2,c,d,k1,k2,K,t;
a1=a[1],n1=n[1];
for (int i=2;i<=m;i++){
a2=a[i],n2=n[i],d=ex_gcd(n1,n2,k1,k2),c=a2-a1;
if (c%d)
return -1;
K=c/d*k1,t=n2/d,K=(K%t+t)%t,a1+=n1*K,n1=n1/d*n2;
}
return a1;
}
int main(){
while (~scanf("%lld",&m)){
for (int i=1;i<=m;i++)
scanf("%lld%lld",&n[i],&a[i]);
printf("%lld\n",solve());
}
return 0;
}
POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理的更多相关文章
- POJ2891 Strange Way to Express Integers (扩展欧几里德)
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia 题目大意 求解一组同余方程 x ≡ r1 (mod a1) x ≡ r2 (mod a2) x ≡ r ...
- [poj2891]Strange Way to Express Integers(扩展中国剩余定理)
题意:求解一般模线性同余方程组 解题关键:扩展中国剩余定理求解.两两求解. $\left\{ {\begin{array}{*{20}{l}}{x = {r_1}\,\bmod \,{m_1}}\\{ ...
- NOI2018Day2T1 屠龙勇士 set 扩展欧几里德 中国剩余定理
原文链接https://www.cnblogs.com/zhouzhendong/p/NOI2018Day2T1.html 题目传送门 - 洛谷P4774 题意 题解 首先我们仔细看一看样例可以发现如 ...
- 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...
- POJ2891——Strange Way to Express Integers(模线性方程组)
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...
- POJ2891 Strange Way to Express Integers
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...
- POJ.2891.Strange Way to Express Integers(扩展CRT)
题目链接 扩展中国剩余定理:1(直观的).2(详细证明). [Upd:]https://www.luogu.org/problemnew/solution/P4774 #include <cst ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- POJ2891 Strange Way to Express Integers【扩展中国剩余定理】
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...
随机推荐
- Nginx 配置文件解析
nginx 整理 nginx 配置主要是分为4个部分 1.main 全局设置2.server 主机设置 -- 指定主机与端口3.upstream 负载均衡服务器设置 -- 反向代理设置:4.locat ...
- 【洛谷P1896【SCOI2005】】互不侵犯King
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...
- cetus系列~ cetus+mha
一 简介:mha+cetus高可用架构二 环境 1 mysql 5.7 并行复制+GTID 2 cetus最新版 3 mha0.57二 安装 1 安装mha-rpm包 2 做免密认证 3 ...
- python cookbook 笔记一
因为有些代码只有在python3里可以正常运行,所以最好配两个虚拟环境 安装虚拟环境: pip install virtualenv virtualenv -p /usr/bin/python3.5 ...
- hadoop学习笔记之一步一步部署hadoop分布式集群
一.准备工作 同一个局域网中的三台linux虚拟机,我用的是redhat6.4,如果主机是windows操作系统,可以先安装vmware workstation, 然后在workstation中装上3 ...
- JavaScript对象复制(二)
<script> function copy(a) { ret = {}; for (sth in a) { temp = a[sth]; if (temp instanceof Arra ...
- js里的回调函数
function a(callback) // 定义一个函数 ,需要传入的参数是callback 然后callback的类型为一个函数{console.log("callback还表示传 ...
- des结合base64加解密的python源码
#coding=utf8 from pyDes import * import base64 class Crypt_Error(): pass """ des方法,de ...
- (并发编程)进程 (multiprocessing--Process实现进程并发)
['创建进程2方式种', '进程对象属性:join方法,守护进程obj.daemon=True,obj.pid, obj.name, obj.terminate(),obj.is_alive()等 ' ...
- 队列queue 代码
import queue q=queue.Queue(3) #队列:先进先出 q.put(1) q.put(2) q.put(3) q.put(4) print(q.get()) print(q.ge ...