The war

Problem Description
 
In the war, the intelligence about the enemy is very important. Now, our troop has mastered the situation of the enemy's war zones, and known that these war zones can communicate to each other directly or indirectly through the network. We also know the enemy is going to build a new communication line to strengthen their communication network. Our task is to destroy their communication network, so that some of their war zones can't communicate. Each line has its "cost of destroy". If we want to destroy a line, we must spend the "cost of destroy" of this line. We want to finish this task using the least cost, but our enemy is very clever. Now, we know the network they have already built, but we know nothing about the new line which our enemy is going to build. In this condition, your task is to find the minimum cost that no matter where our enemy builds the new line, you can destroy it using the fixed money. Please give the minimum cost. For efficiency, we can only destroy one communication line.
 
Input
 
The input contains several cases. For each cases, the first line contains two positive integers n, m (1<=n<=10000, 0<=m<=100000) standing for the number of the enemy's war zones (numbered from 1 to n), and the number of lines that our enemy has already build. Then m lines follow. For each line there are three positive integer a, b, c (1<=a, b<=n, 1<=c<=100000), meaning between war zone A and war zone B there is a communication line with the "cost of destroy " c.
 
Output
For each case, if the task can be finished output the minimum cost, or output ‐1.
 
Sample Input
 
3 2
1 2 1
2 3 2
4 3
1 2 1
1 3 2
1 4 3
 
Sample Output
 
-1
3
 
Hint

For the second sample input: our enemy may build line 2 to 3, 2 to 4,

3 to 4. If they build line 2 to 3, we will destroy line 1 to 4, cost 3. If they

build line 2 to 4, we will destroy line 1 to 3, cost 2. If they build line 3 to 4,

we will destroy line 1 to 2, cost 1. So, if we want to make sure that we can

destroy successfully, the minimum cost is 3.

 
 
题意:
  给你一个n点m边的无向图
  有边权
  现在你可以选任意两个没有边相连的点连一条边,求新图的割边最小边的最大值
题解:
  考虑缩环之后就是一个树
  加一条边形成环,那么这个原树的最小边必然要在这个环内才能使得答案更加优
  找到这条边的两个端点,dfs这两个点,尽量走含有边权最小的链,这个dp处理即可
  dp[u][0/1]分别表示从u这个点开始走一条链含有的最小值和次小值
  最后就是两个端点走出的链的次小值取最小就是答案
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e4+, M = 1e5, mod = 1e9+, inf = 2e9; int ans,scc,t,top,tot,head[N],n,m,dp[N][],a[N],b[N],c[N];
struct edge{int id,to,next,value;}e[M]; void add(int u,int v,int w) {e[t].next = head[u];e[t].to=v;e[t].value=w;e[t].id=;head[u]=t++;} int dfn[N],q[N],inq[N],low[N],belong[N],hav[N]; vector<pair<int ,int > > G[N];
void init() {
for(int i = ; i <= n; ++i) dp[i][] = dp[i][] = inf;
for(int i = ; i <= n; ++i) G[i].clear();
memset(hav,,sizeof(hav));
memset(dfn,,sizeof(dfn));
memset(head,-,sizeof(head));
t = tot = top = scc = ;
}
void dfs(int u) {
low[u] = dfn[u] = ++tot;
q[++top] = u; inq[u] = ;
for(int i = head[u]; i!=-; i = e[i].next) {
int to = e[i].to;
if(e[i].id) continue;
e[i].id = e[i ^ ].id = ;
if(!dfn[to]) {
dfs(to);
low[u] = min(low[u],low[to]);
} else if(inq[to]) low[u] = min(low[u],dfn[to]);
}
if(low[u] == dfn[u]) {
scc++;
do{
inq[q[top]] = ;
belong[q[top]] = scc;
}while(u != q[top--]);
}
}
void dfs_ans(int u,int fa) {
if(u == -) return ;
int fi = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
int value = G[u][i].second;
if(to == fa) continue;
dfs_ans(to,u);
if(!fi) {
dp[u][] = min(value,dp[to][]);
dp[u][] = dp[to][];
fi = ;
} else {
if(min(value,dp[to][]) < dp[u][]) dp[u][] = min(dp[u][],min(dp[to][],dp[u][])),dp[u][] = min(value,dp[to][]);
else dp[u][] = min(dp[u][],min(value,dp[to][]));
}
}
}
void Tarjan() {
int mi = inf, s = -, t = -;
for(int i = ; i <= n; ++i) if(!dfn[i]) dfs(i);
for(int i = ; i <= m; ++i) {
int fx = belong[a[i]];
int fy = belong[b[i]];
if(fx != fy) {
G[fx].push_back(MP(fy,c[i]));
G[fy].push_back(MP(fx,c[i]));
// cout<<fx<<" "<<fy<<endl;
if(c[i] < mi) {
s = fx,t = fy;
mi = c[i];
}
}
}
ans = inf;
dfs_ans(s,t);
dfs_ans(t,s);
if(s != - && t != -)ans = min(dp[s][],dp[t][]);
if(ans == inf) printf("%d\n",-);
else printf("%d\n",ans);
}
int main() {
while(~scanf("%d%d",&n,&m)) {
init();
for(int i = ; i <= m; ++i) {
scanf("%d%d%d",&a[i],&b[i],&c[i]);
add(a[i],b[i],c[i]);add(b[i],a[i],c[i]);
}
Tarjan();
}
return ;
}

HDU 4005 The war Tarjan+dp的更多相关文章

  1. HDU 4005 The war(双连通好题)

    HDU 4005 The war pid=4005" target="_blank" style="">题目链接 题意:给一个连通的无向图.每条 ...

  2. HDU 4005 The war (图论-tarjan)

    The war Problem Description In the war, the intelligence about the enemy is very important. Now, our ...

  3. hdu 4005 The war

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4005 In the war, the intelligence about the enemy is ...

  4. HDU 4005 The war(边双连通)

    题意 ​ 给定一张 \(n\) 个点 \(m\) 条边的无向连通图,加入一条边,使得图中权值最小的桥权值最大,如果能使图中没有桥则输出 \(-1\). 思路 ​ 先对原图边双缩点,然后变成了一棵树.在 ...

  5. HDU 4005 The war 双连通分量 缩点

    题意: 有一个边带权的无向图,敌人可以任意在图中加一条边,然后你可以选择删除任意一条边使得图不连通,费用为被删除的边的权值. 求敌人在最优的情况下,使图不连通的最小费用. 分析: 首先求出边双连通分量 ...

  6. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  7. hdu 5094 Maze 状态压缩dp+广搜

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092176.html 题目链接:hdu 5094 Maze 状态压缩dp+广搜 使用广度优先 ...

  8. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  9. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

随机推荐

  1. Appium+Robotframework实现Android应用的自动化测试-5:RIDE中AppiumLibrary的配置

    可能很多朋友已经迫不及待的想要用RobotFramework+AppiumLibrary来写Android App的测试脚本了,那我们也废话少说,直接开始. 首先打开RIDE,这是编写RobotFra ...

  2. ACM/ICPC 之 Kruskal范例(ZOJ1203-POJ1861(ZOJ1542))

    两道最小生成树范例,Kruskal解法-以边为主体扩展最小生成树,需要利用并查集. ZOJ1203-Swordfish 题意:求n个给定平面坐标的城市中的一条平面距离上的最短路长(保留两位小数) 题解 ...

  3. MySQL排序原理与MySQL5.6案例分析【转】

    本文来自:http://www.cnblogs.com/cchust/p/5304594.html,其中对于自己觉得是重点的加了标记,方便自己查阅.更多详细的说明可以看沃趣科技的文章说明. 前言    ...

  4. Java for LeetCode 225 Implement Stack using Queues

    Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...

  5. Python 输入输出

    语法注释 输入输出 #语法缩进,4个空格 #注释 #冒号:结尾,缩进的预计视为代码块 #大小写敏感 #输出 print 300 print 'hello','world' #输入 a=raw_inpu ...

  6. [转]finished with non-zero exit value 2

    Error:Execution failed for task ':phoneacompany:dexDebug'. > com.android.ide.common.process.Proce ...

  7. Effective C++ -----条款07:为多态基类声明virtual析构函数

    polymorphic(带多态性质的)base classes应该声明一个virtual析构函数.如果class带有任何virtual函数,它就应该拥有一个virtual析构函数. Classes的设 ...

  8. html中的alt和title用法区别

    html中的alt和title用法区别 首先明确一下概念,alt是html标签的属性,而title既是html标签,又是html属性.title标签这个不用多说,网页的标题就是写在<title& ...

  9. 从API请求数据的方法(主要适用于tp5)

    // 从api获取数据,$data是一个数组,默认为空,请求数据的方法可以通用,但是其它说明只适用于tp5 function postData($url,$data=''){ $ch = curl_i ...

  10. 【leetcode】Substring with Concatenation of All Words (hard) ★

    You are given a string, S, and a list of words, L, that are all of the same length. Find all startin ...