Description

在一个有m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。

Input

第1 行有2 个正整数m和n,分别表示棋盘的行数和列数。接下来的m行,每行有n个正整数,表示棋盘方格中的数。

Output

对于给定的方格棋盘,按照取数要求编程找出总和最大的数,将取数的最大总和输出。

Sample Input

3 3
1 2 3
3 2 3
2 3 1

Sample Output

11

HINT

n,m<=30

  嗯......这道题大概算是自己想出来的第一道网络流的题吧?

  虽然想了很久,WA了很多发,但终于A掉了......

  网络流的题真是难想(但这一题还是比较简单的),如果不是我已经知道这道题要用网络流做,还不知道要想到什么时候去了......

  好了,不扯多了,进正题:

  首先,我们发现直接建模的话非常不好搞,体重的条件不好表示......

  于是,我们就想,是否可以把我们选完数之后剩下的数给表示出来呢?我们发现这个不难做到。只需将棋盘黑白二染色,把黑点、白点各看成一块,相邻的格子间有边相连,不难发现将黑白两块分开的割的方案就是不选的点的合法方案(脑补一下应该可以搞出来)。所以最小割即是合法方案中选出的点和最大的方案。于是我们可以从源点向所有黑(白)点连一条容量为这个格子里的数的边,从黑(白)点向相邻的点连一条容量为INF的边,再从白(黑)点向汇点连一条容量为当前格子里的数的边,跑一边最大流即可得出不选的点的最小和,用所有数字之和减去它就是答案。

  update:其实这就是最大独立集等于总点数减去最大匹配数

  下面贴代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxm 100010
#define INF (1<<25)
#define r(j) (j^1) using namespace std;
typedef long long llg; int head[*],next[maxm],to[maxm],c[maxm],tt=;
int a[][],zx[]={,,,-},zy[]={,-,,};
int d[maxm],l,r,dep[maxm],ans,tut,s,t,n,m; int getint(){
int w=;bool q=;
char c=getchar();
while((c>''||c<'')&&c!='-') c=getchar();
if(c=='-') q=,c=getchar();
while(c>=''&&c<='') w=w*+c-'',c=getchar();
return q?-w:w;
} void link(int x,int y,int z){
to[++tt]=y;next[tt]=head[x];head[x]=tt;
to[++tt]=x;next[tt]=head[y];head[y]=tt;
c[tt^]=z;
} bool bfs(){
for(int i=;i<=t;i++) dep[i]=;
l=r=;d[r++]=s;dep[s]=;int u;
while(l!=r){
u=d[l++];
for(int i=head[u];i;i=next[i])
if(!dep[to[i]] && c[i]>){
dep[to[i]]=dep[u]+;
d[r++]=to[i];
}
}
return dep[t]>;
} int dfs(int u,int low){
int res=,v;
if(u==t) return low;
if(!low) return ;
for(int i=head[u];i;i=next[i])
if(c[i]> && dep[to[i]]==dep[u]+){
v=dfs(to[i],min(low-res,c[i]));
c[i]-=v;c[r(i)]+=v;res+=v;
}
return res;
} int main(){
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
n=getint();m=getint();s=n*m+;t=s+;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
a[i][j]=getint();
for(int i=,now();i<=n;i++)
for(int j=;j<=m;j++){
now++;
if(!((i+j)&)){
link(s,now,a[i][j]);
for(int k=,x,y,n1;k<;k++){
x=i+zx[k];y=j+zy[k];
if(x> && x<=n && y> && y<=m){
n1=(x-)*m+y;
link(now,n1,INF);
}
}
}
else link(now,t,a[i][j]);
tut+=a[i][j];
}
while(bfs())
while(int tot=dfs(s,INF)) ans+=tot;
printf("%d\n",tut-ans);
return ;
}

codevs 1907 方格取数 3的更多相关文章

  1. Codevs 1043 方格取数

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Descri ...

  2. Codevs 1227 方格取数 2(费用流)

    1227 方格取数 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 查看运行结果 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数 ...

  3. 【wikioi】1907 方格取数3(最大流+最大权闭合子图)

    http://www.wikioi.com/problem/1907/ 这题我一开始想到的是状压,看到n<=30果断放弃. 然后也想到了黑白染色,然后脑残了,没想到怎么连边. 很简单的一题 黑白 ...

  4. codevs 1227 方格取数 2

    Description 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来, ...

  5. codevs——T1043 方格取数

    http://codevs.cn/problem/1043/  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 De ...

  6. codevs 1043 方格取数 2000年NOIP全国联赛提高组

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而 ...

  7. codevs 方格取数

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Descri ...

  8. tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp

    P1884 [NOIP2000T4]方格取数 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 [noip2000T4]方格取数 描述 设有N*N的方格图(N& ...

  9. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

随机推荐

  1. iOS 学习 - 10下载(3) NSURLSession 音乐 篇

    使用 NSURLSession 下载,需要注意的是文件下载文件之后会自动保存到一个临时目录,需要开发人员自己将此文件重新放到其他指定的目录中 // // ViewController.m // Web ...

  2. iOS 学习资源

    这份学习资料是为 iOS 初学者所准备的, 旨在帮助 iOS 初学者们快速找到适合自己的学习资料, 节省他们搜索资料的时间, 使他们更好的规划好自己的 iOS 学习路线, 更快的入门, 更准确的定位的 ...

  3. 初学svn对版本进行控制 用post- commit钩子实现代码同步到web目录

    这里只是一个记录,原文摘抄svn利用钩子实现代码同步到web目录 思路: 找 到SVN Server中的仓库(Repositories)文件夹的位置,在相应的项目文件夹中找到hooks文件夹.在该文件 ...

  4. python里面出现中文的时候报错 'ascii' codec can't encode characters in position

    编码问题,在头部添加 import sys reload(sys) sys.setdefaultencoding( "utf-8" ) http://www.xuebuyuan.c ...

  5. RabbitMQ入门教程——.NET客户端使用

    众所周知RabbitMQ使用的是AMQP协议.我们知道AMQP是一种网络协议,能够支持符合要求的客户端应用和消息中间件代理之间进行通信. 其中消息代理扮演的角色就是从生产者那儿接受消息,并根据既定的路 ...

  6. Storm系列(一):搭建dotNet开发Storm拓扑的环境

    上篇博客比较了目前流行的计算框架特性,如果你是 Java 开发者,那么根据业务场景选择即可:但是如果你是 .Net 开发者,那么三者都不能拿来即用,至少在这篇文章出现之前是如此.基于上篇文章的比较发现 ...

  7. jenkins邮件通知功能

    第部分:全局设置 第一步:进入jenkins的系统设置 第二步:设置管理员邮件地址: 第三步:下载email-ext插件并填写对应的内容: 第四部:填写邮件通知 第五步:以上就是系统管理里需要填写的全 ...

  8. Linux目录操作

    mkdir() #include <sys/stat.h> #include <sys/types.h> int mkdir(const char *pathname, mod ...

  9. php遍历循环数组实现方法

    简单利用foreach for list each while来遍历数组,包括普通的一维数组与二维数组遍历方法,下面详细的介绍了每个函数的使用方法. $foreach = array(1,2,3); ...

  10. 带有天气预报的高大上web报表制作分享

    我用FineReport开发了挺多报表,但集成天气预报这样提高交互和人性化的还是第一次,所以跟大家分享下. 这个报表是综合的门店销售管理分析面板,可以查询业绩分析.店员销售分析,店铺排行分析(可以看出 ...