Description

在一个有m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。

Input

第1 行有2 个正整数m和n,分别表示棋盘的行数和列数。接下来的m行,每行有n个正整数,表示棋盘方格中的数。

Output

对于给定的方格棋盘,按照取数要求编程找出总和最大的数,将取数的最大总和输出。

Sample Input

3 3
1 2 3
3 2 3
2 3 1

Sample Output

11

HINT

n,m<=30

  嗯......这道题大概算是自己想出来的第一道网络流的题吧?

  虽然想了很久,WA了很多发,但终于A掉了......

  网络流的题真是难想(但这一题还是比较简单的),如果不是我已经知道这道题要用网络流做,还不知道要想到什么时候去了......

  好了,不扯多了,进正题:

  首先,我们发现直接建模的话非常不好搞,体重的条件不好表示......

  于是,我们就想,是否可以把我们选完数之后剩下的数给表示出来呢?我们发现这个不难做到。只需将棋盘黑白二染色,把黑点、白点各看成一块,相邻的格子间有边相连,不难发现将黑白两块分开的割的方案就是不选的点的合法方案(脑补一下应该可以搞出来)。所以最小割即是合法方案中选出的点和最大的方案。于是我们可以从源点向所有黑(白)点连一条容量为这个格子里的数的边,从黑(白)点向相邻的点连一条容量为INF的边,再从白(黑)点向汇点连一条容量为当前格子里的数的边,跑一边最大流即可得出不选的点的最小和,用所有数字之和减去它就是答案。

  update:其实这就是最大独立集等于总点数减去最大匹配数

  下面贴代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxm 100010
#define INF (1<<25)
#define r(j) (j^1) using namespace std;
typedef long long llg; int head[*],next[maxm],to[maxm],c[maxm],tt=;
int a[][],zx[]={,,,-},zy[]={,-,,};
int d[maxm],l,r,dep[maxm],ans,tut,s,t,n,m; int getint(){
int w=;bool q=;
char c=getchar();
while((c>''||c<'')&&c!='-') c=getchar();
if(c=='-') q=,c=getchar();
while(c>=''&&c<='') w=w*+c-'',c=getchar();
return q?-w:w;
} void link(int x,int y,int z){
to[++tt]=y;next[tt]=head[x];head[x]=tt;
to[++tt]=x;next[tt]=head[y];head[y]=tt;
c[tt^]=z;
} bool bfs(){
for(int i=;i<=t;i++) dep[i]=;
l=r=;d[r++]=s;dep[s]=;int u;
while(l!=r){
u=d[l++];
for(int i=head[u];i;i=next[i])
if(!dep[to[i]] && c[i]>){
dep[to[i]]=dep[u]+;
d[r++]=to[i];
}
}
return dep[t]>;
} int dfs(int u,int low){
int res=,v;
if(u==t) return low;
if(!low) return ;
for(int i=head[u];i;i=next[i])
if(c[i]> && dep[to[i]]==dep[u]+){
v=dfs(to[i],min(low-res,c[i]));
c[i]-=v;c[r(i)]+=v;res+=v;
}
return res;
} int main(){
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
n=getint();m=getint();s=n*m+;t=s+;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
a[i][j]=getint();
for(int i=,now();i<=n;i++)
for(int j=;j<=m;j++){
now++;
if(!((i+j)&)){
link(s,now,a[i][j]);
for(int k=,x,y,n1;k<;k++){
x=i+zx[k];y=j+zy[k];
if(x> && x<=n && y> && y<=m){
n1=(x-)*m+y;
link(now,n1,INF);
}
}
}
else link(now,t,a[i][j]);
tut+=a[i][j];
}
while(bfs())
while(int tot=dfs(s,INF)) ans+=tot;
printf("%d\n",tut-ans);
return ;
}

codevs 1907 方格取数 3的更多相关文章

  1. Codevs 1043 方格取数

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Descri ...

  2. Codevs 1227 方格取数 2(费用流)

    1227 方格取数 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 查看运行结果 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数 ...

  3. 【wikioi】1907 方格取数3(最大流+最大权闭合子图)

    http://www.wikioi.com/problem/1907/ 这题我一开始想到的是状压,看到n<=30果断放弃. 然后也想到了黑白染色,然后脑残了,没想到怎么连边. 很简单的一题 黑白 ...

  4. codevs 1227 方格取数 2

    Description 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来, ...

  5. codevs——T1043 方格取数

    http://codevs.cn/problem/1043/  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 De ...

  6. codevs 1043 方格取数 2000年NOIP全国联赛提高组

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而 ...

  7. codevs 方格取数

    1043 方格取数 2000年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Descri ...

  8. tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp

    P1884 [NOIP2000T4]方格取数 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 [noip2000T4]方格取数 描述 设有N*N的方格图(N& ...

  9. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

随机推荐

  1. iOS-RunTime

    原帖:http://www.cnblogs.com/Mike-zh/p/4557014.html 1.Runtime简介 因为Objc是一门动态语言,所以它总是想办法把一些决定工作从编译连接推迟到运行 ...

  2. android support的作用及其常见错误的解决

    *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...

  3. iOS中的事件传递和响应者链条

    本文转自:http://www.linuxidc.com/Linux/2015-08/121270.htm 首先我们来看看ios中事件的产生和传递过程 1.发生触摸事件后,系统会将事件加入到一个由UI ...

  4. CGAffineTransformMakeRotation 实现旋转

    UIImageView *image = [[UIImageView alloc]init]; image.frame = CGRectMake(50, 50, 200, 200); image.im ...

  5. IOS开发之自动布局--VFL语言

    前言:VFL是苹果公司为了简化Autolayout的编码而推出的抽象语言.对于纯代码发烧友,值得我们去学习和了解哦. 1.什么是VFL语言 VFL全称是Visual Format Language,翻 ...

  6. AEAI DP开发平台精要

    1 背景概述 相信很多了解数通畅联软件的人对AEAI DP应用开发平台并不陌生,笔者在入职第一天就开始接触AEAI DP,使用AEAI DP开发过AEAI WM.AEAI CRM以及中国XXXX管理系 ...

  7. 服务器磁盘扩展卷时遭遇“There is not enough space available on the disk(s) to complete this operation.”错误

    在ESX VM的一台服务器由于磁盘空间告警,打算决定给E盘扩展空间,增加20G的空间,在操作过程遭遇了Expanding Disk Volume gives error "There is ...

  8. 【hadoop】——window下elicpse连接hadoop集群基础超详细版

    1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0 ...

  9. 烂泥:CentOS6.5光盘以及ISO镜像文件的使用

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 学习CentOS有一段时间了,在平时使用过程中.系统镜像以及光盘使用的比较多,这篇文章就从实用的角度介绍相关有关光盘与镜像文件的使用. 因为物理机相关的 ...

  10. android 反编译apktool工具

    下载地址:http://pan.baidu.com/s/1bnHANtd 1.将编译的*.apk放在apktool的根目录下:2.双击“解压软件.bat”后,会提示完成:这样就反编译成功以:3.查看反 ...