Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4343    Accepted Submission(s): 1541

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
#include <bits/stdc++.h>
using namespace std;
const int N = 20005;
const int M = 50005; struct edge {
int v, next;
edge() {}
edge(int v, int next): v(v), next(next) {}
}e[M], e2[M]; int head[N], head2[N], num[N], in[N], out[N], tot, tot2;
int low[N], dfn[N], Stack[N], belong[N];
int scc, Index, top;
bool Instack[N]; void addedge(int u, int v, bool is) {
if(is) {
e[tot] = edge(v, head[u]);
head[u] = tot++;
}else {
e2[tot2] = edge(v, head2[u]);
head2[u] = tot2++;
}
} void Tarjan(int u) {
int v;
low[u] = dfn[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; ~i; i = e[i].next) {
v = e[i].v;
if(!dfn[v]) {
Tarjan(v);
if(low[u] > low[v]) low[u] = low[v];
}else if(Instack[v] && low[u] > dfn[v]) {
low[u] = dfn[v];
}
} if(low[u] == dfn[u])
{
scc++;
do {
v = Stack[--top];
Instack[v] = false;
belong[v] = scc;
num[scc]++;
} while(v != u);
}
} void solve(int n)
{
memset(dfn, 0, sizeof dfn);
memset(Instack, false, sizeof Instack);
memset(num, 0, sizeof num);
Index = scc = top = 0;
for(int i = 1; i <= n; ++i) if(!dfn[i]) Tarjan(i);
}
void init() {
tot = tot2 = 0;
memset(head, -1, sizeof head);
memset(head2, -1, sizeof head2);
} int main()
{
int _; scanf("%d", &_);
while(_ --)
{
init();
int n, m, u, v;
scanf("%d%d", &n, &m);
for(int i = 1; i <= m ;++i) {
scanf("%d%d", &u, &v);
addedge(u, v, true);
}
solve(n);
memset(in, 0, sizeof in);
memset(out, 0, sizeof out); for(int u = 1; u <= n; ++u) {
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(belong[u] != belong[v]) {
addedge(belong[u], belong[v], false);
}
}
}
for(int u = 1; u <= scc; ++u) {
for(int i = head2[u]; ~i; i = e2[i].next) {
int v = e2[i].v;
in[v]++;
out[u]++;
}
}
int a = 0, b = 0;
for(int i = 1; i <= scc; ++i) {
if(in[i] == 0) a++;
if(out[i] == 0) b++;
}
printf("%d\n", scc == 1 ? 0 : max(a, b));
}
return 0;
}

  

 
Source

hdu2767 Proving Equivalences Tarjan缩点的更多相关文章

  1. HDU2767 Proving Equivalences(加边变为强联通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU2767 Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  3. UVALive 4287 Proving Equivalences(缩点)

    等价性问题,给出的样例为 a->b的形式,问要实现全部等价(即任意两个可以互相推出),至少要加多少个形如 a->b的条件. 容易想到用强连通缩点,把已经实现等价的子图缩掉,最后剩余DAG. ...

  4. hdu2767 Proving Equivalences --- 强连通

    给一个图,问至少加入�多少条有向边能够使图变成强连通的. 原图是有环的,缩点建图,在该DAG图上我们能够发现,要使该图变成强连通图必须连成环 而加入�最少的边连成环,就是把图上入度为0和出度为0的点连 ...

  5. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  6. UvaLive 4287 Proving Equivalences 强连通缩点

    原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  7. HDU2767Proving Equivalences tarjan缩点,如何求入度和出度最大值

    给定一个有向图,问最少增加多少条边后变成强连通图    tarjan求求强连通分量并缩点,如果强连通分量个数为1,则需要边数为0,  否则为缩点后点入度和出度的最大值,  证明:当入度或者出度不为0时 ...

  8. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  9. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

随机推荐

  1. 【C语言】结构体

    不能定义 struct Node { struct Node a; int b; } 这样的结构,因为为了建立Node 需要 建立一个新的Node a, 可为了建立Node a, 还需要再建立Node ...

  2. PDO(数据访问抽象层)

    自带事务功能,多条sql同时执行时,如果其中一条执行失败,那么所有的都执行失败.开启了事务,可以进行回滚操作,让程序变得更安全. 1.访问不同的数据库2.自带事务功能3.防止SQL注入:分两次发送 / ...

  3. objective-c可变数组

     1 #pragma mark ---------------可变数组-----------------  2 //        可以在数组里面进行增删改的操作  3 //  4 //        ...

  4. 躲避大龙(codevs 1961)

    题目描述 Description 你早上起来,慢悠悠地来到学校门口,发现已经是八点整了!(这句话里有一个比较重要的条件) 学校共有N个地点,编号为1~N,其中1号为学校门口(也就是你现在所处的位置), ...

  5. python基础——返回函数

    python基础——返回函数 函数作为返回值 高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回.  我们来实现一个可变参数的求和.通常情况下,求和的函数是这样定义的: def calc_ ...

  6. Linux系统监控命令及如何定位到Java线程

    >>PID.TID的区分 uid是user id,即用户id,root用户的uid是0,0为最高权限,gid是group id,用户组id,使用 id 命令可以很简单的通过用户名查看UID ...

  7. 无废话ExtJs 入门教程五[文本框:TextField]

    无废话ExtJs 入门教程五[文本框:TextField] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在表单里加了个两个文本框.如下所示代码区的第42行位置,items: ...

  8. Ext.MessageBox消息框

    Ext JS消息提示框主要包括:alert.confirm.prompt.show 1.Ext.MessageBox.alert() 调用格式: alert( String title, String ...

  9. 在SSIS包中的事务处理

    在处理SSIS包的数据ETL操作过程中,我们经常遇到的一个问题就是一系列步骤在运行的过程中,如果中间的一个步骤失败了,那么我们就需要清理前面已经运行过的步骤所产生的数据或者结果,这往往是一个很头疼的过 ...

  10. c++ 调用dll

    1.首先写一个dll程序并且输出成dll. 新建win32项目,然后在应用程序类型中选择dll. HelloDll.h: #pragma once #ifndef MYDLL_API_EXPORTS ...