Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4343    Accepted Submission(s): 1541

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
#include <bits/stdc++.h>
using namespace std;
const int N = 20005;
const int M = 50005; struct edge {
int v, next;
edge() {}
edge(int v, int next): v(v), next(next) {}
}e[M], e2[M]; int head[N], head2[N], num[N], in[N], out[N], tot, tot2;
int low[N], dfn[N], Stack[N], belong[N];
int scc, Index, top;
bool Instack[N]; void addedge(int u, int v, bool is) {
if(is) {
e[tot] = edge(v, head[u]);
head[u] = tot++;
}else {
e2[tot2] = edge(v, head2[u]);
head2[u] = tot2++;
}
} void Tarjan(int u) {
int v;
low[u] = dfn[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; ~i; i = e[i].next) {
v = e[i].v;
if(!dfn[v]) {
Tarjan(v);
if(low[u] > low[v]) low[u] = low[v];
}else if(Instack[v] && low[u] > dfn[v]) {
low[u] = dfn[v];
}
} if(low[u] == dfn[u])
{
scc++;
do {
v = Stack[--top];
Instack[v] = false;
belong[v] = scc;
num[scc]++;
} while(v != u);
}
} void solve(int n)
{
memset(dfn, 0, sizeof dfn);
memset(Instack, false, sizeof Instack);
memset(num, 0, sizeof num);
Index = scc = top = 0;
for(int i = 1; i <= n; ++i) if(!dfn[i]) Tarjan(i);
}
void init() {
tot = tot2 = 0;
memset(head, -1, sizeof head);
memset(head2, -1, sizeof head2);
} int main()
{
int _; scanf("%d", &_);
while(_ --)
{
init();
int n, m, u, v;
scanf("%d%d", &n, &m);
for(int i = 1; i <= m ;++i) {
scanf("%d%d", &u, &v);
addedge(u, v, true);
}
solve(n);
memset(in, 0, sizeof in);
memset(out, 0, sizeof out); for(int u = 1; u <= n; ++u) {
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(belong[u] != belong[v]) {
addedge(belong[u], belong[v], false);
}
}
}
for(int u = 1; u <= scc; ++u) {
for(int i = head2[u]; ~i; i = e2[i].next) {
int v = e2[i].v;
in[v]++;
out[u]++;
}
}
int a = 0, b = 0;
for(int i = 1; i <= scc; ++i) {
if(in[i] == 0) a++;
if(out[i] == 0) b++;
}
printf("%d\n", scc == 1 ? 0 : max(a, b));
}
return 0;
}

  

 
Source

hdu2767 Proving Equivalences Tarjan缩点的更多相关文章

  1. HDU2767 Proving Equivalences(加边变为强联通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU2767 Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  3. UVALive 4287 Proving Equivalences(缩点)

    等价性问题,给出的样例为 a->b的形式,问要实现全部等价(即任意两个可以互相推出),至少要加多少个形如 a->b的条件. 容易想到用强连通缩点,把已经实现等价的子图缩掉,最后剩余DAG. ...

  4. hdu2767 Proving Equivalences --- 强连通

    给一个图,问至少加入�多少条有向边能够使图变成强连通的. 原图是有环的,缩点建图,在该DAG图上我们能够发现,要使该图变成强连通图必须连成环 而加入�最少的边连成环,就是把图上入度为0和出度为0的点连 ...

  5. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  6. UvaLive 4287 Proving Equivalences 强连通缩点

    原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  7. HDU2767Proving Equivalences tarjan缩点,如何求入度和出度最大值

    给定一个有向图,问最少增加多少条边后变成强连通图    tarjan求求强连通分量并缩点,如果强连通分量个数为1,则需要边数为0,  否则为缩点后点入度和出度的最大值,  证明:当入度或者出度不为0时 ...

  8. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  9. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

随机推荐

  1. 【leetcode】Spiral Matrix(middle)

    Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral or ...

  2. 编译QtAV工程库

    去https://github.com/wang-bin/QtAV下载源代码 去https://sourceforge.net/projects/qtav/files/depends/QtAV-dep ...

  3. 获取driver网络路径名称

    'get the web path of the drive s: Dim MM As New Management.ManagementObject(String.Format("win3 ...

  4. SQL Server output经典使用

    output经典使用 分类: sql2012-02-16 18:17 409人阅读 评论(0) 收藏 举报 outputinserttabledeletegonull OUTPUT是SQL SERVE ...

  5. maximum subarray problem

    In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...

  6. VB 笔记

    阅读方法:网页放大至200%,调整合适位置,阅读很方便,                                                                 csdn就可以 ...

  7. 数据结构之AVL树

    AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 旋转 如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡.这种失去平衡的可以概括为4种姿态:LL ...

  8. IT人学习方法论(二):学习误区

    之前我们讨论了“学什么”的问题,今天我们来谈一谈“怎么学”的问题.磨刀不误砍柴工,我们要提高学习效率,首先需要找到自己学习方法上的误区. 一些常见的学习方法误区 1)资料导向型 现在就停止阅读这篇文章 ...

  9. Android Programming: Pushing the Limits -- Chapter 1: Fine-Tuning Your Development Environment

    ADB命令 Application Exerciser Monkey Gradle ProGuard 代码重用 版本控制 静态代码分析 代码重构 开发者模式   ADB命令: @.adb help:查 ...

  10. 登录到mysql查看binlog日志

    查看当前第一个binlog文件的内容 show binlog events; 查看指定binlog文件内容 show binlog events in 'mysql-bin.000002'; 查看当前 ...