Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4343    Accepted Submission(s): 1541

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
#include <bits/stdc++.h>
using namespace std;
const int N = 20005;
const int M = 50005; struct edge {
int v, next;
edge() {}
edge(int v, int next): v(v), next(next) {}
}e[M], e2[M]; int head[N], head2[N], num[N], in[N], out[N], tot, tot2;
int low[N], dfn[N], Stack[N], belong[N];
int scc, Index, top;
bool Instack[N]; void addedge(int u, int v, bool is) {
if(is) {
e[tot] = edge(v, head[u]);
head[u] = tot++;
}else {
e2[tot2] = edge(v, head2[u]);
head2[u] = tot2++;
}
} void Tarjan(int u) {
int v;
low[u] = dfn[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; ~i; i = e[i].next) {
v = e[i].v;
if(!dfn[v]) {
Tarjan(v);
if(low[u] > low[v]) low[u] = low[v];
}else if(Instack[v] && low[u] > dfn[v]) {
low[u] = dfn[v];
}
} if(low[u] == dfn[u])
{
scc++;
do {
v = Stack[--top];
Instack[v] = false;
belong[v] = scc;
num[scc]++;
} while(v != u);
}
} void solve(int n)
{
memset(dfn, 0, sizeof dfn);
memset(Instack, false, sizeof Instack);
memset(num, 0, sizeof num);
Index = scc = top = 0;
for(int i = 1; i <= n; ++i) if(!dfn[i]) Tarjan(i);
}
void init() {
tot = tot2 = 0;
memset(head, -1, sizeof head);
memset(head2, -1, sizeof head2);
} int main()
{
int _; scanf("%d", &_);
while(_ --)
{
init();
int n, m, u, v;
scanf("%d%d", &n, &m);
for(int i = 1; i <= m ;++i) {
scanf("%d%d", &u, &v);
addedge(u, v, true);
}
solve(n);
memset(in, 0, sizeof in);
memset(out, 0, sizeof out); for(int u = 1; u <= n; ++u) {
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(belong[u] != belong[v]) {
addedge(belong[u], belong[v], false);
}
}
}
for(int u = 1; u <= scc; ++u) {
for(int i = head2[u]; ~i; i = e2[i].next) {
int v = e2[i].v;
in[v]++;
out[u]++;
}
}
int a = 0, b = 0;
for(int i = 1; i <= scc; ++i) {
if(in[i] == 0) a++;
if(out[i] == 0) b++;
}
printf("%d\n", scc == 1 ? 0 : max(a, b));
}
return 0;
}

  

 
Source

hdu2767 Proving Equivalences Tarjan缩点的更多相关文章

  1. HDU2767 Proving Equivalences(加边变为强联通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU2767 Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  3. UVALive 4287 Proving Equivalences(缩点)

    等价性问题,给出的样例为 a->b的形式,问要实现全部等价(即任意两个可以互相推出),至少要加多少个形如 a->b的条件. 容易想到用强连通缩点,把已经实现等价的子图缩掉,最后剩余DAG. ...

  4. hdu2767 Proving Equivalences --- 强连通

    给一个图,问至少加入�多少条有向边能够使图变成强连通的. 原图是有环的,缩点建图,在该DAG图上我们能够发现,要使该图变成强连通图必须连成环 而加入�最少的边连成环,就是把图上入度为0和出度为0的点连 ...

  5. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  6. UvaLive 4287 Proving Equivalences 强连通缩点

    原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  7. HDU2767Proving Equivalences tarjan缩点,如何求入度和出度最大值

    给定一个有向图,问最少增加多少条边后变成强连通图    tarjan求求强连通分量并缩点,如果强连通分量个数为1,则需要边数为0,  否则为缩点后点入度和出度的最大值,  证明:当入度或者出度不为0时 ...

  8. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  9. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

随机推荐

  1. 【leetcode】 search Insert Position(middle)

    Given a sorted array and a target value, return the index if the target is found. If not, return the ...

  2. 【mongo】pymongo通过_id删除数据

    来源:http://www.educity.cn/wenda/361741.html pymongo 根据 objectId _id 来删除数据想要删除数据,根据_id ,是最靠谱的,具体方法因为 _ ...

  3. codeforces gym 100694 M The Fifth Season (巴什博奕)

    题目链接 一直觉得巴什博奕是最简单的博弈遇到肯定没问题,结果被虐惨了,看完标程错了10多遍都没反应过来,当然标程题解和代码的意思也写反了,但是还是想对自己说一句mdzz,傻啊!!!这道题很不错,我觉得 ...

  4. php面向对象加载类、常用设计模式

    加载类: include("./Ren.class.php"); include "./Ren.class.php"; 用此方法的时候include后面要加空格 ...

  5. php处理图片实现

    <?php include("SimpleImage.php");//图片处理类在下面 $url="http://f3.v.veimg.cn/meadincms/1 ...

  6. PHP工厂模式的研究

    工厂方法模式 把 创造者类 和要生产的 产品类 分离.创建者是一个工厂类,其定义了产品生产的类方法.一般情况下,创建者类的每个子类实例化一个相应的产品子类. 下面是单个产品的实现代码: <?ph ...

  7. 解决java.lang.NoClassDefFoundError: org/apache/log4j/Level

    现象: java.lang.NoClassDefFoundError: org/apache/log4j/Level at org.slf4j.LoggerFactory.getSingleton(L ...

  8. java的基本结构

  9. jQuery和JS原生方法对比

  10. Linux系统启动过程分析

    [原创]Linux系统启动过程分析-wjlkoorey258-ChinaUnix博客http://blog.chinaunix.net/uid-23069658-id-3142047.html 经过对 ...