【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算。需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算。大概把过程总结了一下如下图所示:


STEP 1:Implement CNN Objective
STEP 1a: Forward Propagation
Forward Propagation主要是为了计算输入图片经过神经网络后的输出,这个网络有三层:convolution->pooling->softmax(dense connected),卷积层对于每个图像用所有的模板进行卷积;pooling层对卷积层输出的feature map采样;softmax层根据pooling层输出的feature预测图像的分类结果。其中convolution和pooling操作在之前就实现过了。具体的过程可以参见上图中Forward Pass中每层的具体操作。代码如下:
%%% YOUR CODE HERE %%%
%调用之前已经实现的函数
activations = cnnConvolve(filterDim, numFilters, images, Wc, bc);%sigmoid(wx+b)
activationsPooled = cnnPool(poolDim, activations); % Reshape activations into 2-d matrix, hiddenSize x numImages,
% for Softmax layer
%将activationsPooled从outDim*outDim*numFilters*numImages拼接成hiddenSize*numImages的大矩阵
activationsPooled = reshape(activationsPooled,[],numImages); %% Softmax Layer
% Forward propagate the pooled activations calculated above into a
% standard softmax layer. For your convenience we have reshaped
% activationPooled into a hiddenSize x numImages matrix. Store the
% results in probs. % numClasses x numImages for storing probability that each image belongs to
% each class.
probs = zeros(numClasses,numImages); %%% YOUR CODE HERE %%%
h = exp(bsxfun(@plus,Wd * activationsPooled,bd));
probs = bsxfun(@rdivide,h,sum(h,1));
STEP 1b: Calculate Cost
计算梯度下降要优化的目标函数,主要分为两部分,一部分是由于分类器输出结果和真实结果的差异引起的误差函数,另一部分是对权重w的正则约束。第一部分可以参考softmax regression中对损失函数的计算,第二部分就是对Wc和Wd的所有项求平方和。类似下面的公式,不过第一项中的J是softmax的cross entropy损失函数。最后要对第一项除以图像的总数,这是十分重要的,一开始我没有除,最后得到的算法是发散的,原因可能是第一项数值过大,直接把正则项的影响给忽略了。

代码:
%%% YOUR CODE HERE %%%
logp = log(probs);
index = sub2ind(size(logp),labels',1:size(probs,2));
ceCost = -sum(logp(index));
wCost = lambda/2 * (sum(Wd(:).^2)+sum(Wc(:).^2));
cost = ceCost/numImages + wCost;
STEP 1c: Backpropagation
BP算法首先要计算各层的对最终误差的贡献delta。
softmax层:这一层的误差最容易计算,只要用ground truth减去神经网络的输出probs就可以了:
output = zeros(size(probs));
output(index) = 1;
DeltaSoftmax = probs - output;
pool层:这一层首先根据公式δl = Wδl+1 * f'(zl)(pool层没有f'(zl)这一项)计算该层的error,此时得到一个hiddenSize*numImages的矩阵,首先利用reshape函数把error还原成一个convDim*convDim*numFilters*numImages的矩阵,在pooling操作时,pooling层一个节点的输入是conv层2*2个节点的输出(假设poolDim=2)如下图所示:

所以pooling层的这个节点要将自己的error在这2*2个节点中平均分(因为使用的是mean pooling),UFLDL上面提示了可以用kron这个函数来实现,这样如上图所示,就可以通过pooling层一个2*2的filter对应的error计算得到convolution层一个4*4的filter对应的error了。代码如下:
DeltaPool = reshape(Wd' * DeltaSoftmax,outputDim,outputDim,numFilters,numImages);
DeltaUnpool = zeros(convDim,convDim,numFilters,numImages); for imNum = 1:numImages
for FilterNum = 1:numFilters
unpool = DeltaPool(:,:,FilterNum,imNum);
DeltaUnpool(:,:,FilterNum,imNum) = kron(unpool,ones(poolDim))./(poolDim ^ 2);
end
end
convolution层:还是根据公式δl = Wδl+1 * f'(zl)来计算:
DeltaConv = DeltaUnpool .* activations .* (1 - activations);
STEP 1d: Gradient Calculation
整个cnn一共有三层:convolution->pooling->softmax(dense connected),只有convolution和softmax层有权重,分别为Wc,bc,Wd,bd。那么就要计算目标函数J对他们的倒数以便在梯度下降中更新W和b。
Wd和bd的梯度计算:
根据下面两个公式:

其中al-1对应pooling层的激励(输出)activitonsPooled,δl就是这一层的误差DeltaSoftmax,代码如下:
Wd_grad = (1./numImages) .* DeltaSoftmax*activationsPooled'+lambda*Wd;
bd_grad = (1./numImages) .* sum(DeltaSoftmax,2);
Wc和bc的梯度计算:
还是根据上面两个计算梯度的公式,不过麻烦就麻烦在l-1层其实是输入的图像,所以al-1对应的是输入的图像,那么就得用for循环逐个便利图像并利用UFLDL上提供的公式计算对应梯度:

这里为了方便,先对所有DeltaConv进行旋转,然后再用for循环依次求出梯度:
%%% YOUR CODE HERE %%%
Wd_grad = (1./numImages) .* DeltaSoftmax*activationsPooled'+lambda*Wd;
bd_grad = (1./numImages) .* sum(DeltaSoftmax,2); bc_grad = zeros(size(bc));
Wc_grad = zeros(filterDim,filterDim,numFilters); for filterNum = 1:numFilters
error = DeltaConv(:,:,filterNum,:);
bc_grad(filterNum) = (1./numImages) .* sum(error(:));
end %旋转所有DealtaConv
for filterNum = 1:numFilters
for imNum = 1:numImages
error = DeltaConv(:,:,filterNum,imNum);
DeltaConv(:,:,filterNum,imNum) = rot90(error,2);
end
end for filterNum = 1:numFilters
for imNum = 1:numImages
Wc_grad(:,:,filterNum) = Wc_grad(:,:,filterNum) + conv2(images(:,:,imNum),DeltaConv(:,:,filterNum,imNum),'valid');
end
end
Wc_grad = (1./numImages) .* Wc_grad + lambda*Wc;
Step 2: Gradient Check
当时明明我的梯度下降没法收敛,这一步居然通过了=。=
Step 3: Learn Parameters
这步比较简单,根据UFLDL对随机梯度下降的解释,在minFuncSGD中加上冲量的影响就可以了:
%%% YOUR CODE HERE %%%
velocity = mom*velocity+alpha*grad;
theta = theta - velocity;
Step 4: Test
运行cnnTrain,最后准确率可以达到97%+

以上就可UFLDL上cnn的实现,最重要的是弄清楚每一层在每一个过程中需要进行的操作,我都总结在文章开头的表格里面了~matlab给我一个很大的感受就是矩阵的demension match,有时候知道公式是什么样的,但是实现起来要考虑矩阵的维度,两个维度match的矩阵才能相乘或者相加,不过好处就是再不知道怎么写代码的时候可以结果维度match来写代码。而且cnn debug起来真的好困难,完全不知道是哪里出了问题=。=
完整的代码在我的github上。
参考:
【1】http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionalNeuralNetwork/
【2】http://blog.csdn.net/lingerlanlan/article/details/41390443
【UFLDL】Exercise: Convolutional Neural Network的更多相关文章
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...
- 【论文阅读】ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices
- 【转载】 卷积神经网络(Convolutional Neural Network,CNN)
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...
- 斯坦福大学卷积神经网络教程UFLDL Tutorial - Convolutional Neural Network
Convolutional Neural Network Overview A Convolutional Neural Network (CNN) is comprised of one or mo ...
- 卷积神经网络(Convolutional Neural Network, CNN)简析
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...
- 深度学习FPGA实现基础知识10(Deep Learning(深度学习)卷积神经网络(Convolutional Neural Network,CNN))
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份 ...
- 卷积神经网络(Convolutional Neural Network,CNN)
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...
随机推荐
- C#中的延迟加载
什么是延迟加载? 延迟加载顾名思义就是:推迟加载的时机,当真正使用的时候才加载. 通常在创建一个大对象时,有些属性我们可以在使用到的时候才去创建(设置属性的值),这个可以有效的提升系统性能. 示例 ...
- Jmeter进行数据库压测
一.配置并发用户 新建线程组,设置线程数,Ramp-up和循环次数 二.添加JDBC请求 先选中JDBC Users(线程组),右键选中ADD-Config Element--JDBC Connect ...
- role roleMapping 权限说明
根据我的理解,希望能帮助到大家 role表 是权限列表. roleMapping 关联权限(例如那个用户在那个权限里面,或者权限里面包含那个权限) roleMapping的数据不能单独添加.必须在ro ...
- kafka 命令行操作
1.创建主题(topic) bin/kafka-topics.sh --create --zookeeper m6:2181 --replication-factor 1 --partitions 1 ...
- (喷血分享)利用.NET生成数据库表的创建脚本,类似SqlServer编写表的CREATE语句
(喷血分享)利用.NET生成数据库表的创建脚本,类似SqlServer编写表的CREATE语句 在我们RDIFramework.NET代码生成器中,有这样一个应用,就是通过数据库表自动生成表的CREA ...
- Struts(七):action配置文件之通配符映射
通配符映射:一个Web应用可能有成百上千个action声明,可以使用struts提供的通配符映射机制把多个彼此相似的映射关系简化为一个映射关系. 通配符映射规则: 若找到多个匹配,没有通配符的那个将胜 ...
- 什么是FOUC?如何避免FOUC?///////////////////////////zzzz
一个新的名词叫做 FOUC 浏览器样式闪烁,之前也听说过一些类似的东西,比如样式突变等等,但这东西竟然有学名的..什么是FOUC(文档样式短暂失效)?如果使用import方法对CSS进行导入,会导致 ...
- 9.请写出PHP5权限控制修饰符
1.public:public表明该数据成员.成员函数是对所有用户开放的,所有用户都可以直接进行调用 2.private:private表示私有,私有的意思就是除了class自己之外,任何人都不可以直 ...
- paper 113:Bhattacharyya distance
在统计理论中,Bhattacharyya距离用来度量两个离散或连续概率分布的相似性.它与Bhattacharyya系数(Bhattacharyya coefficient)高度相关,后者是用来度量两个 ...
- Orchard part8
http://skywalkersoftwaredevelopment.net/blog/writing-an-orchard-webshop-module-from-scratch-part-8 定 ...