老是报物理内存越界,kill container,然后把yarn.scheduler.minimum-allocation-mb设成2048就好了

跟这个yarn.nodemanager.pmem-check-enabled参数应该也有关系

在这篇文章中得到启发:http://dongxicheng.org/mapreduce-nextgen/hadoop-yarn-memory-cpu-scheduling/

调度和隔离

Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进一步调度CPU,需要自己进行一些配置),本文将介绍YARN是如何对这些资源进行调度和隔离的。

在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责 资源的分配,而NodeManager则负责资源的供给和隔离。ResourceManager将某个NodeManager上资源分配给任务(这就是所 谓的“资源调度”)后,NodeManager需按照要求为任务提供相应的资源,甚至保证这些资源应具有独占性,为任务运行提供基础的保证,这就是所谓的 资源隔离。

内存资源的多少会会决定任务的生死,如果内存不够,任务可能会运行失败;相比之下,CPU资源则不同,它只会决定任务运行的快慢,不会对生死产生影响。

内存配置参数

基于以上考虑,YARN允许用户配置每个节点上可用的物理内存资源,注意,这里是“可用的”,因为一个节点上的内存会被若干个服务共享,比如一部分给YARN,一部分给HDFS,一部分给HBase等,YARN配置的只是自己可以使用的,配置参数如下

(1)yarn.nodemanager.resource.memory-mb

表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。

(2)yarn.nodemanager.vmem-pmem-ratio

任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。

(3) yarn.nodemanager.pmem-check-enabled

是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。

(4) yarn.nodemanager.vmem-check-enabled

是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。

(5)yarn.scheduler.minimum-allocation-mb

单个任务可申请的最少物理内存量,默认是1024(MB),如果一个任务申请的物理内存量少于该值,则该对应的值改为这个数。

(6)yarn.scheduler.maximum-allocation-mb

单个任务可申请的最多物理内存量,默认是8192(MB)。

默认情况下,YARN采用了线程监控的方法判断任务是否超量使用内存,一旦发现超量,则直接将其杀死。由于Cgroups对内存的控制缺乏灵活性 (即任务任何时刻不能超过内存上限,如果超过,则直接将其杀死或者报OOM),而Java进程在创建瞬间内存将翻倍,之后骤降到正常值,这种情况下,采用 线程监控的方式更加灵活(当发现进程树内存瞬间翻倍超过设定值时,可认为是正常现象,不会将任务杀死),因此YARN未提供Cgroups内存隔离机制。

CPU配置参数

在YARN中,CPU资源的组织方式仍在探索中,目前(2.2.0版本)只是一个初步的,非常粗粒度的实现方式,更细粒度的CPU划分方式已经提出来了,正在完善和实现中。

目前的CPU被划分成虚拟CPU(CPU virtual Core),这里的虚拟CPU是YARN自己引入的概念,初衷是,考虑到不同节点的CPU性能可能不同,每个CPU具有的计算能力也是不一样的,比如某个 物理CPU的计算能力可能是另外一个物理CPU的2倍,这时候,你可以通过为第一个物理CPU多配置几个虚拟CPU弥补这种差异。用户提交作业时,可以指 定每个任务需要的虚拟CPU个数。在YARN中,CPU相关配置参数如下:

(1)yarn.nodemanager.resource.cpu-vcores

表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设值为与物理CPU核数数目相同。如果你的节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。

(2) yarn.scheduler.minimum-allocation-vcores

单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。

(3)yarn.scheduler.maximum-allocation-vcores

单个任务可申请的最多虚拟CPU个数,默认是32。

默认情况下,YARN是不会对CPU资源进行调度的,你需要配置相应的资源调度器让你支持

默认情况下,NodeManager不会对CPU资源进行任何隔离,你可以通过启用Cgroups让你支持CPU隔离。

由于CPU资源的独特性,目前这种CPU分配方式仍然是粗粒度的。举个例子,很多任务可能是IO密集型的,消耗的CPU资源非常少,如果此时你为它 分配一个CPU,则是一种严重浪费,你完全可以让他与其他几个任务公用一个CPU,也就是说,我们需要支持更粒度的CPU表达方式。

借鉴亚马逊EC2中CPU资源的划分方式,即提出了CPU最小单位为EC2 Compute Unit(ECU),一个ECU代表相当于1.0-1.2 GHz 2007 Opteron or 2007 Xeon处理器的处理能力。YARN提出了CPU最小单位YARN Compute Unit(YCU),目前这个数是一个整数,默认是720,由参数yarn.nodemanager.resource.cpu-ycus-per- core设置,表示一个CPU core具备的计算能力(该feature在2.2.0版本中并不存在,可能增加到2.3.0版本中),这样,用户提交作业时,直接指定需要的YCU即 可,比如指定值为360,表示用1/2个CPU core,实际表现为,只使用一个CPU core的1/2计算时间。注意,在操作系统层,CPU资源是按照时间片分配的,你可以说,一个进程使用1/3的CPU时间片,或者1/5的时间片

hadoop yarn running beyond physical memory used的更多相关文章

  1. 运行hadoop的时候提示物理内存或虚拟内存溢出的解决方案running beyond physical memory或者beyond vitual memory limits

    当运行中出现Container is running beyond physical memory这个问题出现主要是因为物理内存不足导致的,在执行mapreduce的时候,每个map和reduce都有 ...

  2. spark运行任务报错:Container [...] is running beyond physical memory limits. Current usage: 3.0 GB of 3 GB physical memory used; 5.0 GB of 6.3 GB virtual memory used. Killing container.

    spark版本:1.6.0 scala版本:2.10 报错日志: Application application_1562341921664_2123 failed 2 times due to AM ...

  3. is running beyond physical memory limits. Current usage: 2.0 GB of 2 GB physical memory used; 2.6 GB of 40 GB virtual memory used

    昨天使用hadoop跑五一的数据,发现报错: Container [pid=,containerID=container_1453101066555_4130018_01_000067] GB phy ...

  4. hadoop is running beyond virtual memory limits问题解决

    单机搭建了2.6.5的伪分布式集群,写了一个tf-idf计算程序,分词用的是结巴分词,使用standalone模式运行没有任何问题,切换到伪分布式模式运行一直报错: hadoop is running ...

  5. 【hadoop】 running beyond virtual memory错误原因及解决办法

    问题描述: 在hadoop中运行应用,出现了running beyond virtual memory错误.提示如下: Container [pid=28920,containerID=contain ...

  6. [hadoop] - Container [xxxx] is running beyond physical/virtual memory limits.

    当运行mapreduce的时候,有时候会出现异常信息,提示物理内存或者虚拟内存超出限制,默认情况下:虚拟内存是物理内存的2.1倍.异常信息类似如下: Container [pid=13026,cont ...

  7. Hadoop YARN中内存的设置

    在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责资源的分配,而NodeManager则负责资源的供给和隔离.R ...

  8. hive: insert数据时Error during job, obtaining debugging information 以及beyond physical memory limits

    insert overwrite table canal_amt1...... 2014-10-09 10:40:27,368 Stage-1 map = 100%, reduce = 32%, Cu ...

  9. hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used

    实际遇到的真实问题,解决方法: 1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1) 2.调整map与reduce的在AM中的大小大于y ...

随机推荐

  1. phpcms 标签

    都说pc标签{pc:content参数名="参数值"参数名="参数值"参数名="参数值"} 但是 参数名对应的具体参数值有那些,菜鸟就不知道 ...

  2. profiler加入计划任务

    创建profiler的存储过程: USE [xxxDB] GO /****** Object: StoredProcedure [dbo].[CreateProfile] Script Date: 2 ...

  3. ASP.NET的Cookie和Session

    HTTP属于应用层,HTTP协议一共有五大特点:1.支持客户/服务器模式;2.简单快速;3.灵活;4.无连接;5.无状态. 无状态HTTP协议是无状态的协议.一旦数据交换完毕,客户端与服务器端的连接就 ...

  4. 并发中的Native方法,CAS操作与ABA问题

    Native方法,Unsafe与CAS操作 >>JNI和Native方法 Java中,通过JNI(Java Native Interface,java本地接口)来实现本地化,访问操作系统底 ...

  5. Gmail 账号找回办法

    前段时间一直在用GFW代理,结果发现GOOGLE账户的保护机制起用了,要给以前的手机号发消息,结果哪个号现在不用了,所以就登陆不进去了,非常扯淡,索性谷歌了下,得出如下的解决方案,完美解决,下次直接在 ...

  6. Analysis Services OLAP 概述

    1. 什么是OLAP •定义1 :OLAP(联机分析处理)是针对特定问题的联机数据访问和分析.通过对信息(维数据)的多种可能的观察形式进行快速.稳定一致和交互性的存取,允许管理决策人员对数据进行深入观 ...

  7. PHP_Memcache函数详解

    memcache函数所有的方法列表如下: Memcache::add – 添加一个值,如果已经存在,则返回false Memcache::addServer – 添加一个可供使用的服务器地址 Memc ...

  8. Java Web 项目获取运行时路径 classpath

    假设资源文件放在maven工程的 src/main/resources 资源文件夹下,源码文件放在 src/main/java/下, 那么java文件夹和resources文件夹在运行时就是class ...

  9. Android SDK Manager 中如果没有相应的镜像ARM XX Image

    Android SDK Manager 中如果没有相应的镜像ARM XX Image 处理做法是:先更新 相应版本Android SDK Tools 然后出现 ARM XX Image

  10. loj 1377 (bfs)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1377 思路:这道题只要处理好遇到"*"这种情况就可以搞定了.我们可 ...