【BZOJ-3122】随机数生成器 BSGS
3122: [Sdoi2013]随机数生成器
Time Limit: 10 Sec Memory Limit: 256 MB
Submit:
1362 Solved: 531
[Submit][Status][Discuss]
Description
Input
输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数。
接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据。保证X1和t都是合法的页码。
注意:P一定为质数
Output
共T行,每行一个整数表示他最早读到第t页是哪一天。如果他永远不会读到第t页,输出-1。
Sample Input
7 1 1 3 3
7 2 2 2 0
7 2 2
2 1
Sample Output
3
-1
HINT
0<=a<=P-1,0<=b<=P-1,2<=P<=10^9
Source
Solution
不错的题
对于题目中给出的式子,我们尝试的得出$X_{n}$关于$X_{1}$的式子
显然暴力带是不能得到的,考虑对原始式子进行变形:首先同余方程式左右是可以同时+—*/的毫无问题,那么我们对式子如下变化:
$X_{i+1}\equiv aX_{i}+b (mod p)$
==>$X_{i+1}+\frac{b}{a-1}\equiv aX_{i}+b+\frac{b}{a-1} (mod p)$
==>$X_{i+1}+\frac{b}{a-1}\equiv a(X_{i}+\frac{b}{a-1}) (mod p)$
那么我们显然能够用$X_{1}$表示$X_{n}$,层层带入得
$X_{n}+\frac{b}{a-1}\equiv a^{n-1}(X_{1}+\frac{b}{a-1}) (mod p)$
然后在模意义下,我们使用逆元计算,这样的话,利用BSGS算法求解即可
这里有些需要特判掉的情况:
1° $X_{1}=t$ 显然ans=1
2° $a==0$ 显然得到$X_{n}\equiv b(mod p)$ 那么$b=t$时 ans=2 否则 ans=-1
3° $a==1$ 显然得到$X_{n}\equiv X_{1}+(n-1)b(mod p)$ 这样显然可以用ExGCD求解
Code
(感觉这是这道题最短的代码了2333)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
long long read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-'';ch=getchar();}
return (long long)x*f;
}
int T;
long long p;
long long Quick_Pow(long long x,long long y,long long p)
{
long long re=;
for (int i=y; i; i>>=,x=x*x%p)
if (i&) re=re*x%p;
return re;
}
long long BSGS(long long a,long long b,long long p)
{
long long m=ceil(sqrt(p)),t=;
map<long long,long long>hash;
for (int i=; i<=m; i++,b=b*a%p) hash[b]=i;
long long f=Quick_Pow(a,m,p);
for (long long i=; i<=m; i++)
if (t=t*f%p,hash.count(t)) return i*m-hash[t]+;
return -;
}
int main()
{
T=read();
while (T--)
{
long long a,b,X1,t;
p=read(),a=read(),b=read(),X1=read(),t=read();
if (X1==t) {puts(""); continue;}
if (a==) {if (t==b) puts(""); else puts("-1"); continue;}
if (a==) {if (!b) puts("-1"); else printf("%lld\n",((((t-X1+p)%p)*Quick_Pow(b,p-,p)%p)%p)+); continue;}
long long aa=Quick_Pow(a-,p-,p),t1=b*aa%p,t2=(X1%p+t1)%p,tt=Quick_Pow(t2,p-,p),t3=(t+t1)%p;
printf("%lld\n",BSGS(a,t3*tt%p,p));
}
return ;
}
【BZOJ-3122】随机数生成器 BSGS的更多相关文章
- bzoj 3122 随机数生成器 - BSGS
Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...
- BZOJ 3122 随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 题意:给出p,a,b,x1,t 已知xn=a*xn-1+b%p,求最小的n令xn=t 首先,若 ...
- 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1442 Solved: 552 Description ...
- 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判
[BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b, ...
- bzoj 3122 : [Sdoi2013]随机数生成器 BSGS
BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...
- Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)
Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...
- BZOJ3122 随机数生成器——BSGS
题意 链接 给定 $p,\ a,\ b, \ x_1$,现有一数列 $$x_{i+1} \equiv (ax_i + b) \ mod \ p$$ 求最小的 $i$ 满足 $x_i = t$ 分析 代 ...
- [BZOJ]3671 随机数生成器(Noi2014)
洛谷上卡不过去的朋友们可以来看看小C的程序(小C才不是标题党呢!) Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子 ...
- BZOJ3122: [Sdoi2013]随机数生成器(BSGS)
题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...
随机推荐
- asp利用winrar解压缩文件
'当前文件夹路径 server.MapPath("./") '网站根目录 server.MapPath("/") Dim strZipFolder ' 待压缩的 ...
- Markdown:认识&入门
来源:http://sspai.com/25137 一.认识 Markdown 在刚才的导语里提到,Markdown 是一种用来写作的轻量级「标记语言」,它用简洁的语法代替排版,而不像一般我们用的字处 ...
- Castle.Net 基本应用
什么是Castle Castle是针对.NET平台的一个开源项目,从数据访问框架ORM到IOC容器,再到WEB层的MVC框架.AOP,基本包括了整个开发过程中的所有东西,为我们快速的构建企业级的应用程 ...
- php中创建和调用webservice接口示例
php中创建和调用webservice接口示例 这篇文章主要介绍了php中创建和调用webservice接口示例,包括webservice基本知识.webservice服务端例子.webservi ...
- 表单验证——JavaScript和Jquery版
1.轻量级的JavaScript表单验证 在应用中引用 validator.min.js 文件 <script type="text/javascript" src=&quo ...
- node基础06:回调函数
1.Node异步编程 Node.js 异步编程的直接体现就是回调. 异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了. 回调函数在完成任务后就会被调用,Node 使用了大量的回调函数,No ...
- Java类加载和类反射回顾
今天学习Spring,突然想重新复习一下Java类加载和类反射的.巩固一下底层原理.部分参考了李刚老师的<疯狂Java讲义>和陈雄华.林开雄的<Spring3.x企业应用开发实战&g ...
- rpc框架: thrift/avro/protobuf 之maven插件生成java类
thrift.avro.probobuf 这几个rpc框架的基本思想都差不多,先定义IDL文件,然后由各自的编译器(或maven插件)生成目标语言的源代码,但是,根据idl生成源代码这件事,如果每次都 ...
- Entity Framework6 with Oracle(可实现code first)
Oracle 与2个月前刚提供对EF6的支持.以前只支持到EF5.EF6有很多有用的功能 值得升级.这里介绍下如何支持Oracle 一.Oracle 对.net支持的一些基础知识了解介绍. 1.早 ...
- 两个Canvas小游戏
或许连小游戏都算不上,可以叫做mini游戏. 没有任何框架或者稍微有点深度的东西,所以有js基础的或者要追求炫酷效果的可以直接ctrl+w了. 先贴出两个游戏的试玩地址: 是男人就走30步 是男人就忍 ...