【BZOJ-3122】随机数生成器 BSGS
3122: [Sdoi2013]随机数生成器
Time Limit: 10 Sec Memory Limit: 256 MB
Submit:
1362 Solved: 531
[Submit][Status][Discuss]
Description
.jpg)
Input
输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数。
接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据。保证X1和t都是合法的页码。
注意:P一定为质数
Output
共T行,每行一个整数表示他最早读到第t页是哪一天。如果他永远不会读到第t页,输出-1。
Sample Input
7 1 1 3 3
7 2 2 2 0
7 2 2
2 1
Sample Output
3
-1
HINT
0<=a<=P-1,0<=b<=P-1,2<=P<=10^9
Source
Solution
不错的题
对于题目中给出的式子,我们尝试的得出$X_{n}$关于$X_{1}$的式子
显然暴力带是不能得到的,考虑对原始式子进行变形:首先同余方程式左右是可以同时+—*/的毫无问题,那么我们对式子如下变化:
$X_{i+1}\equiv aX_{i}+b (mod p)$
==>$X_{i+1}+\frac{b}{a-1}\equiv aX_{i}+b+\frac{b}{a-1} (mod p)$
==>$X_{i+1}+\frac{b}{a-1}\equiv a(X_{i}+\frac{b}{a-1}) (mod p)$
那么我们显然能够用$X_{1}$表示$X_{n}$,层层带入得
$X_{n}+\frac{b}{a-1}\equiv a^{n-1}(X_{1}+\frac{b}{a-1}) (mod p)$
然后在模意义下,我们使用逆元计算,这样的话,利用BSGS算法求解即可
这里有些需要特判掉的情况:
1° $X_{1}=t$ 显然ans=1
2° $a==0$ 显然得到$X_{n}\equiv b(mod p)$ 那么$b=t$时 ans=2 否则 ans=-1
3° $a==1$ 显然得到$X_{n}\equiv X_{1}+(n-1)b(mod p)$ 这样显然可以用ExGCD求解
Code
(感觉这是这道题最短的代码了2333)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
long long read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-'';ch=getchar();}
return (long long)x*f;
}
int T;
long long p;
long long Quick_Pow(long long x,long long y,long long p)
{
long long re=;
for (int i=y; i; i>>=,x=x*x%p)
if (i&) re=re*x%p;
return re;
}
long long BSGS(long long a,long long b,long long p)
{
long long m=ceil(sqrt(p)),t=;
map<long long,long long>hash;
for (int i=; i<=m; i++,b=b*a%p) hash[b]=i;
long long f=Quick_Pow(a,m,p);
for (long long i=; i<=m; i++)
if (t=t*f%p,hash.count(t)) return i*m-hash[t]+;
return -;
}
int main()
{
T=read();
while (T--)
{
long long a,b,X1,t;
p=read(),a=read(),b=read(),X1=read(),t=read();
if (X1==t) {puts(""); continue;}
if (a==) {if (t==b) puts(""); else puts("-1"); continue;}
if (a==) {if (!b) puts("-1"); else printf("%lld\n",((((t-X1+p)%p)*Quick_Pow(b,p-,p)%p)%p)+); continue;}
long long aa=Quick_Pow(a-,p-,p),t1=b*aa%p,t2=(X1%p+t1)%p,tt=Quick_Pow(t2,p-,p),t3=(t+t1)%p;
printf("%lld\n",BSGS(a,t3*tt%p,p));
}
return ;
}
【BZOJ-3122】随机数生成器 BSGS的更多相关文章
- bzoj 3122 随机数生成器 - BSGS
Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...
- BZOJ 3122 随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 题意:给出p,a,b,x1,t 已知xn=a*xn-1+b%p,求最小的n令xn=t 首先,若 ...
- 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1442 Solved: 552 Description ...
- 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判
[BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b, ...
- bzoj 3122 : [Sdoi2013]随机数生成器 BSGS
BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...
- Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)
Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...
- BZOJ3122 随机数生成器——BSGS
题意 链接 给定 $p,\ a,\ b, \ x_1$,现有一数列 $$x_{i+1} \equiv (ax_i + b) \ mod \ p$$ 求最小的 $i$ 满足 $x_i = t$ 分析 代 ...
- [BZOJ]3671 随机数生成器(Noi2014)
洛谷上卡不过去的朋友们可以来看看小C的程序(小C才不是标题党呢!) Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子 ...
- BZOJ3122: [Sdoi2013]随机数生成器(BSGS)
题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...
随机推荐
- PHP-数组函数
今天在写一个给第三方同步数据的接口时遇到一个这种情况,我有一大坨数据,但是第三方只需要其中的几个而已,不及思索的就开始foreach $ret = array(); foreach ($needPar ...
- Linux下命令行安装配置android sdk
首先, 你得有个VPN 参考以下三篇完成Android SDK的安装 https://www.digitalocean.com/community/tutorials/how-to-build-and ...
- [NOIP2010初赛]烽火传递+单调队列详细整理
P1313 [NOIP2010初赛]烽火传递 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上 ...
- 小tips: 使用 等空格实现最小成本中文对齐
一.重见天日第二春 11年的时候,写了篇文章“web页面相关的一些常见可用字符介绍”,这篇文章里面藏了个好东西,就是使用一些空格实现个数不等的中文对齐或等宽.见下表: 字符以及HTML实体 描述以及说 ...
- 【C#】【Thread】Semaphore/SemaphoreSlim信号量
System.Threading.Semaphore 类表示一个命名(系统范围)信号量或本地信号量. 它是一个对 Win32 信号量对象的精简包装. Win32 信号量是计数信号量,可用于控制对资源池 ...
- C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 组织机构的名称编号是否允许重复?
通常情况下,一个公司内部的部门名称,编号是不可能重复的.但是是在多公司的情况下,很可能有部门名称重复的问题存在,这时需要允许部门名称重复. 例如一个大型IT公司,在2个地区都有研发部或者客户服务部,这 ...
- Android 开发之旅:view的几种布局方式及实践
本文的主要内容就是分别介绍以上视图的七种布局显示方式效果及实现,大纲如下: 1.View布局概述 2.线性布局(Linear Layout) 2.1.Tips:android:layout_weigh ...
- SEO初级优化--HTML、CSS、JS
HTML: 1.标签的有开有合. 2.避免冗余代码,例如去除空格字符. 3.合理利用标签语义化. 4.合理的嵌套规则,避免行元素内嵌套块元素. 5.img标签内需要添加title属性和alt属性. 6 ...
- Android开发:在EditText中关闭软键盘 转来的
1.EditText有焦点(focusable为true)阻止输入法弹出 editText=(EditText)findViewById(R.id.txtBody); editText.setOnTo ...
- [MCSM] Slice Sampler
1. 引言 之前介绍的MCMC算法都具有一般性和通用性(这里指Metropolis-Hasting 算法),但也存在一些特殊的依赖于仿真分布特征的MCMC方法.在介绍这一类算法(指Gibbs samp ...