数位dp

先从1到162枚举各位数之和

s[i][j][k][l]表示i位数,第一位小于等于j,当前各位数字和为k,当前取模余数为l的方案数

然后脑补一下转移就行了

详见代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define ll long long using namespace std;
ll P;
int bin[20];
bool vis[20][180][180];
ll s[20][10][180][180]; ll f(int n,int t,int sum,int mod);
void solve(int n,int sum,int mod){
if (n<1) return;
if (vis[n][sum][mod]) return;
vis[n][sum][mod]=1;
for (int i=0;i<10;++i)
s[n][i][sum][mod]=f(n-1,9,sum-i,(mod-bin[n]*i%P+P)%P);
for (int i=1;i<10;++i) s[n][i][sum][mod]+=s[n][i-1][sum][mod];
}
ll f(int n,int t,int sum,int mod){
if (sum<0||n*9<sum||t<0) return 0;
if (n<1) return mod==0;
solve(n,sum,mod);
return s[n][t][sum][mod];
} int a[21],b[21],len0,len1;
int main(){
ll L,R;
scanf("%lld%lld",&L,&R);++R;
for (len0=0;L;L/=10) a[++len0]=L%10;
for (len1=0;R;R/=10) b[++len1]=R%10;
bin[1]=1;
ll ans=0;
for (P=1;P<=len1*9;++P){
for (int i=2;i<=len1;++i) bin[i]=bin[i-1]*10%P;
ll ans0,ans1;
memset(vis,0,sizeof(vis));
for (int k=0;k<2;++k){
swap(ans0,ans1);ans0=0;
for (int i=1;i<=max(len0,len1);++i) swap(a[i],b[i]);
swap(len0,len1);
int now=P,nowmod=0;
for (int i=len0;i;--i){
ans0+=f(i,a[i]-1,now,nowmod);
now-=a[i];nowmod=(nowmod-a[i]*bin[i]%P+P)%P;
}
}
ans+=ans1-ans0;
}
printf("%lld\n",ans);
return 0;
}

  

代码写的好乱……

bzoj1799: [Ahoi2009]self 同类分布的更多相关文章

  1. [BZOJ1799][Ahoi2009]self 同类分布(数位dp)

    题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输 ...

  2. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  3. 【数位dp】bzoj1799: [Ahoi2009]self 同类分布

    各种奇怪姿势的数位dp Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Sample Input 10 19 Sample Output 3 HINT [约束条 ...

  4. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  5. [Ahoi2009]self 同类分布

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 2357  Solved: 1079[Submit][ ...

  6. BZOJ 1799 - [AHOI2009]self 同类分布 - 枚举 数位DP

    Description 找出$[L, R]$ 区间内有多少数, 各位数字和 能整除原数 Solution 枚举每个可能的数字和, 进行数位DP即可 , 水爆 Code #include<cstd ...

  7. 【BZOJ】1799: [Ahoi2009]self 同类分布

    [题意]给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1 ≤ a ≤ b ≤ 10^18 [算法]数位DP [题解] 感觉这种方法很暴力啊. 枚举数位和1~162(不能枚举0,不然会模 ...

  8. 【AHOI2009】同类分布 题解(数位DP)

    题目大意:求$[l,r]$中各位数之和能被该数整除的数的个数.$0\leq l\leq r\leq 10^{18}$. ------------------------ 显然数位DP. 搜索时记录$p ...

  9. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

随机推荐

  1. wget 怎么下载https的连接错误: Unable to establish SSL connection

    curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.4.11.tgz?_ga=1.33040702.1440244624.1 ...

  2. Post model至Web Api创建或是保存数据

    前一篇<Post model至Web Api>http://www.cnblogs.com/insus/p/4343538.html中,使用Post来从Web Api获取数据.由于Post ...

  3. Html5的一些引擎使用感触

    记得在2011年的时候,51CTO曾经采访我对H5的看法,因为当时Html5小组和雷友的关系,感觉是一片大火的形式,当时我的看法是:第一盈利模式不清晰,第二硬件跟不上,第三技术不成熟. 第一和第二点很 ...

  4. uploadify firefox 401

    uploadify在firefox下上传会报401错误:这是因为java的框架把其拦截了 拦截的原因是,firefox下的flash在请求和发送请求的时候不会携带cookie和session过去,造成 ...

  5. hadoop: hdfs API示例

    利用hdfs的api,可以实现向hdfs的文件.目录读写,利用这一套API可以设计一个简易的山寨版云盘,见下图: 为了方便操作,将常用的文件读写操作封装了一个工具类: import org.apach ...

  6. eclipse/intellij Idea集成jetty

    jetty相对weblogic.jboss.tomcat而言,启动速度快,十分方便开发调试,以下是eclipse里的使用步骤: 一.eclipse->Marketplace里搜索 jetty 一 ...

  7. 前端见微知著番外篇:GIT舍我其谁?

    在上一篇中,我们讲到了利用纯UI的软件如何实现代码的提交.但是在MAC机器上,是没有turtoiseGit这类软件的,所以利用命令行的方式就是我们的首选了. 下面我们来描述两种主要的Git使用场景: ...

  8. OS存储器管理(一)

    存储器的层次: 分为寄存器.主存(内存)和 辅存(外存)三个层次. 主存:高速缓冲存储器.主存储器.磁盘缓冲存储器, 主存又称为可执行存储器: 辅存:固定磁盘存储器.可移动的外部存储器: 其可长期保存 ...

  9. php 升级php5.5

    rpm -Uvh http://mirror.webtatic.com/yum/el6/latest.rpm yum install php55w php55w-opcache yum install ...

  10. MyBatis学习--mybatis开发dao的方法

    简介 使用Mybatis开发Dao,通常有两个方法,即原始Dao开发方法和Mapper接口开发方法. 主要概念介绍: MyBatis中进行Dao开发时候有几个重要的类,它们是SqlSessionFac ...