AVL树插入操作实现
为了提高二插排序树的性能,规定树中的每个节点的左子树和右子树高度差的绝对值不能大于1。为了满足上面的要求需要在插入完成后对树进行调整。下面介绍各个调整方式。
右单旋转
如下图所示,节点A的平衡因子(左子树高度减右子树高度)为1。由于在节点A的左孩子B的左子树上插入了新节点,导致B的左子树高度增加1,从而导致A的平衡因子为2,这时为了保持平衡需要对树进行调整。

旋转的方法就是将A的变为B的右子树,将B的右子树变为A的左子树。
示例代码:
private Node RRotate(Node node){
Node A </span>=<span style="color: #000000"> node;
Node B </span>=<span style="color: #000000"> node.LChild;
</span><span style="color: #008000">//</span><span style="color: #008000">旋转</span>
Node tmp =<span style="color: #000000"> B.RChild;
B.RChild </span>=<span style="color: #000000"> A;
A.LChild </span>=<span style="color: #000000"> tmp;
</span><span style="color: #008000">//</span><span style="color: #008000">更新树的高度</span>
A.height = Math.max(height(A.LChild), height(A.RChild))+1<span style="color: #000000">;
B.height </span>= Math.max(height(B.LChild), height(B.RChild))+1<span style="color: #000000">;
</span><span style="color: #0000ff">return</span><span style="color: #000000"> B;
}</span></pre></div>
(每个节点我们维护了一个height的属性来记录树的高度,每次旋转完成后需要更新树的高度。因为旋转会导致书的根节点发生变化,所以每次旋转完成后需要将新的根节点返回)
左单旋转
左单旋转整好与右单旋转相反。右单旋转是因为左子树太高,而左单旋转则是因为右子树太高,需要降低其高度。
如图所示节点B的右子树高度增加1,导致节点A的平衡因子变为-2,所以需要进行左旋调整位置。

旋转方法:将A变为B的左子树,将B的左子树变为A的右子树
示例代码:
private Node LRotate(Node node){
Node A = node;
Node B = node.RChild;
</span><span style="color: #008000">//</span><span style="color: #008000">旋转</span>
Node tmp =<span style="color: #000000"> B.LChild;
B.LChild </span>=<span style="color: #000000"> A;
A.RChild </span>=<span style="color: #000000"> tmp;
</span><span style="color: #008000">//</span><span style="color: #008000">更新树的高度</span>
A.height = Math.max(height(A.LChild), height(A.RChild))+1<span style="color: #000000">;
B.height </span>= Math.max(height(B.LChild), height(B.RChild))+1<span style="color: #000000">;
</span><span style="color: #0000ff">return</span><span style="color: #000000"> B;
}</span></pre></div>
(每个节点我们维护了一个height的属性来记录树的高度,每次旋转完成后需要更新树的高度。因为旋转会导致书的根节点发生变化,所以每次旋转完成后需要将新的根节点返回)
先左后右旋转
上面的两种情况处理比较简单,因为插入的节点要么是根节点左孩子的左子树或者是根节点右孩子的右子树。如果插入的节点在根节点左孩子的右子树上,则需要先进行左旋然后进行右旋操作。

如图所示,插入的节点在B节点右子树上,这时需要对B节点进行左旋操作,然后对A节点进行右旋操作。
示例代码:
private Node LRRotate(Node node){
//先进行左旋
LRotate(node.LChild);
//在进行右旋
return RRotate(node);
}
代码中node节点就是图中的A节点,先对A节点的左孩子B进行左旋操作,然后对A(node)节点进行右旋操作
先右旋后左旋
当插入的节点在根节点的右孩子的左子树上,则需要进行先右旋后左旋操作。

示例代码:
//先右后左旋转
private Node RLRotate(Node node){
//再进行右旋转
RRotate(node.RChild);
//再进行右旋
return LRotate(node);
}
插入操作
插入操作通过递归方式实现,在插入操作完成后需要对访问路径上的每个节点进行判断来确定是否要旋转。
public Node insert(Node node, int i){
//先将节点插入到树中
if(node == null)
return new Node(i, 1, node);
</span><span style="color: #008000">//</span><span style="color: #008000">插入的值与当前节点值进行比较来确定插入的位置</span>
<span style="color: #0000ff">if</span>(i <<span style="color: #000000"> node.val){
node.LChild </span>=<span style="color: #000000"> insert(node.LChild, i);
</span><span style="color: #008000">//</span><span style="color: #008000">判断是否进行调整</span>
<span style="color: #0000ff">if</span>(height(node.LChild) - height(node.RChild) == 2<span style="color: #000000">){
</span><span style="color: #0000ff">if</span>(i <<span style="color: #000000"> node.LChild.val)
</span><span style="color: #008000">//</span><span style="color: #008000">插入的节点在左孩子的左子树上,则需要进行右旋</span>
node =<span style="color: #000000"> RRotate(node);
</span><span style="color: #0000ff">else</span>
<span style="color: #008000">//</span><span style="color: #008000">插入的节点在左孩子的右子树上,则需要先进行左旋后进行右旋</span>
node =<span style="color: #000000"> LRRotate(node);
}
}
</span><span style="color: #0000ff">else</span><span style="color: #000000">{
node.RChild </span>=<span style="color: #000000"> insert(node.RChild, i);
</span><span style="color: #0000ff">if</span>(height(node.LChild) - height(node.RChild) == -2<span style="color: #000000">){
</span><span style="color: #0000ff">if</span>(i ><span style="color: #000000"> node.RChild.val)
node </span>=<span style="color: #000000"> LRotate(node);
</span><span style="color: #0000ff">else</span><span style="color: #000000">
node </span>=<span style="color: #000000"> RLRotate(node);
}
}
node.height </span>= Math.max(height(node.LChild), height(node.RChild))+1<span style="color: #000000">;
</span><span style="color: #0000ff">return</span><span style="color: #000000"> node;
}</span></pre></div>
//计算树的高度,主要解决空树高度的问题(空树的高度为0)
private int height(Node node){
return node == null ? 0:node.height;
}
判断一棵树是否是AVL树
判断时通过后续遍历的方式来比较左右子树的高度差
static boolean isBalance(Node node,Depth d){
if(node == null){
d.height=0;
return true;
}
Depth right=new Depth();
Depth left = new Depth();
if(isBalance(node.LChild,left)&&isBalance(node.RChild, right)){
if(Math.abs(left.height - right.height)<2){//绝对值小于等于1
//如果是平衡树,才有必要算深度,然后看上级是不是平衡树
d.height=(left.height>right.height?left.height:right.height)+1;
System.out.println("left="+left.height+" right="+right.height+" height"+d.height+" value="+node.val);
return true;
}
}
System.out.println("left="+left.height+" right="+right.height+" height"+d.height+" value="+node.val);
return false;
}
</span><span style="color: #0000ff">static</span> <span style="color: #0000ff">class</span><span style="color: #000000"> Depth{
</span><span style="color: #0000ff">int</span><span style="color: #000000"> height;
}</span></pre></div>
完整代码
package com.dy.xidian;
public class AVL {
private Node root;
static class Node{
int val; //存储数据
int height; //权重
Node LChild; //右孩子
Node RChild; //左孩子
<span style="color: #0000ff">public</span> Node(<span style="color: #0000ff">int</span> k, <span style="color: #0000ff">int</span><span style="color: #000000"> _height){
</span><span style="color: #0000ff">this</span>.val =<span style="color: #000000"> k;
</span><span style="color: #0000ff">this</span>. height =<span style="color: #000000"> _height;
}
}
</span><span style="color: #0000ff">private</span> <span style="color: #0000ff">void</span> initAVL(<span style="color: #0000ff">int</span><span style="color: #000000">[] arr){
</span><span style="color: #0000ff">for</span>(<span style="color: #0000ff">int</span><span style="color: #000000"> i : arr)
root </span>=<span style="color: #000000"> insert(root, i);
}
</span><span style="color: #0000ff">public</span> AVL(<span style="color: #0000ff">int</span><span style="color: #000000">[] arr){
initAVL(arr);
}
</span><span style="color: #008000">//</span><span style="color: #008000">右旋</span>
<span style="color: #0000ff">private</span><span style="color: #000000"> Node RRotate(Node node){
Node A </span>=<span style="color: #000000"> node;
Node B </span>=<span style="color: #000000"> node.LChild;
</span><span style="color: #008000">//</span><span style="color: #008000">旋转</span>
Node tmp =<span style="color: #000000"> B.RChild;
B.RChild </span>=<span style="color: #000000"> A;
A.LChild </span>=<span style="color: #000000"> tmp;
</span><span style="color: #008000">//</span><span style="color: #008000">更新树的高度</span>
A.height = Math.max(height(A.LChild), height(A.RChild))+1<span style="color: #000000">;
B.height </span>= Math.max(height(B.LChild), height(B.RChild))+1<span style="color: #000000">;
</span><span style="color: #0000ff">return</span><span style="color: #000000"> B;
}
</span><span style="color: #008000">//</span><span style="color: #008000">左旋</span>
<span style="color: #0000ff">private</span><span style="color: #000000"> Node LRotate(Node node){
Node A </span>=<span style="color: #000000"> node;
Node B </span>=<span style="color: #000000"> node.RChild;
</span><span style="color: #008000">//</span><span style="color: #008000">旋转</span>
Node tmp =<span style="color: #000000"> B.LChild;
B.LChild </span>=<span style="color: #000000"> A;
A.RChild </span>=<span style="color: #000000"> tmp;
</span><span style="color: #008000">//</span><span style="color: #008000">更新树的高度</span>
A.height = Math.max(height(A.LChild), height(A.RChild))+1<span style="color: #000000">;
B.height </span>= Math.max(height(B.LChild), height(B.RChild))+1<span style="color: #000000">;
</span><span style="color: #0000ff">return</span><span style="color: #000000"> B;
}
</span><span style="color: #008000">//</span><span style="color: #008000">先左后右旋转</span>
<span style="color: #0000ff">private</span><span style="color: #000000"> Node LRRotate(Node node){
</span><span style="color: #008000">//</span><span style="color: #008000">先进行左旋</span>
LRotate(node.LChild);
//在进行右旋
return RRotate(node);
}
</span><span style="color: #008000">//</span><span style="color: #008000">先右后左旋转</span>
<span style="color: #0000ff">private</span><span style="color: #000000"> Node RLRotate(Node node){
</span><span style="color: #008000">//</span><span style="color: #008000">再进行右旋转</span>
RRotate(node.RChild);
//再进行右旋
return LRotate(node);
}
</span><span style="color: #008000">//</span><span style="color: #008000">计算树的高度,主要解决空树高度的问题(空树的高度为0)</span>
<span style="color: #0000ff">private</span> <span style="color: #0000ff">int</span><span style="color: #000000"> height(Node node){
</span><span style="color: #0000ff">return</span> node == <span style="color: #0000ff">null</span> ? 0<span style="color: #000000">:node.height;
}
</span><span style="color: #0000ff">public</span> Node insert(Node node, <span style="color: #0000ff">int</span><span style="color: #000000"> i){
</span><span style="color: #008000">//</span><span style="color: #008000">先将节点插入到树中</span>
<span style="color: #0000ff">if</span>(node == <span style="color: #0000ff">null</span><span style="color: #000000">)
</span><span style="color: #0000ff">return</span> <span style="color: #0000ff">new</span> Node(i, 1<span style="color: #000000">);
</span><span style="color: #008000">//</span><span style="color: #008000">插入的值与当前节点值进行比较来确定插入的位置</span>
<span style="color: #0000ff">if</span>(i <<span style="color: #000000"> node.val){
node.LChild </span>=<span style="color: #000000"> insert(node.LChild, i);
</span><span style="color: #008000">//</span><span style="color: #008000">判断是否进行调整</span>
<span style="color: #0000ff">if</span>(height(node.LChild) - height(node.RChild) == 2<span style="color: #000000">){
</span><span style="color: #0000ff">if</span>(i <<span style="color: #000000"> node.LChild.val)
</span><span style="color: #008000">//</span><span style="color: #008000">插入的节点在左孩子的左子树上,则需要进行右旋</span>
node =<span style="color: #000000"> RRotate(node);
</span><span style="color: #0000ff">else</span>
<span style="color: #008000">//</span><span style="color: #008000">插入的节点在左孩子的右子树上,则需要先进行左旋后进行右旋</span>
node =<span style="color: #000000"> LRRotate(node);
}
}
</span><span style="color: #0000ff">else</span><span style="color: #000000">{
node.RChild </span>=<span style="color: #000000"> insert(node.RChild, i);
</span><span style="color: #0000ff">if</span>(height(node.LChild) - height(node.RChild) == -2<span style="color: #000000">){
</span><span style="color: #0000ff">if</span>(i ><span style="color: #000000"> node.RChild.val)
node </span>=<span style="color: #000000"> LRotate(node);
</span><span style="color: #0000ff">else</span><span style="color: #000000">
node </span>=<span style="color: #000000"> RLRotate(node);
}
}
node.height </span>= Math.max(height(node.LChild), height(node.RChild))+1<span style="color: #000000">;
</span><span style="color: #0000ff">return</span><span style="color: #000000"> node;
}
</span><span style="color: #0000ff">public</span> <span style="color: #0000ff">static</span> <span style="color: #0000ff">void</span><span style="color: #000000"> main(String[] args) {
</span><span style="color: #0000ff">int</span>[] arr = {1,2,3,4,5,6,7,8,9,10,11,12,13,14<span style="color: #000000">};
AVL avl </span>= <span style="color: #0000ff">new</span><span style="color: #000000"> AVL(arr);
}
}
查考博文
AVL树插入操作实现的更多相关文章
- AVL树插入和删除
一.AVL树简介 AVL树是一种平衡的二叉查找树. 平衡二叉树(AVL 树)是一棵空树,或者是具有下列性质的二叉排序树: 1它的左子树和右子树都是平衡二叉树, 2且左子树和右子树高度之差的 ...
- AVL树相关操作
#include <iostream> using namespace std; //AVL树的节点 template<typename T> class TreeNode { ...
- AVL树插入(Python实现)
建立AVL树 class AVLNode(object): def __init__(self,data): self.data = data self.lchild = None self.rchi ...
- avl树的操作证明
以下用大O表示节点,ABC表示三个集合. 仅分析左子树的情况,因为对称,右子树的情况一样. 插入节点前 O / \ O A / \ B C 插入节点后: O ...
- AVL树Python实现
# coding=utf-8 # AVL树Python实现 def get_height(node): return node.height if node else -1 def tree_mini ...
- 树-二叉搜索树-AVL树
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...
- AVL树(平衡二叉树)
定义及性质 AVL树:AVL树是一颗自平衡的二叉搜索树. AVL树具有以下性质: 根的左右子树的高度只差的绝对值不能超过1 根的左右子树都是 平衡二叉树(AVL树) 百度百科: 平衡二叉搜索树(Sel ...
- AVL树的插入与删除
AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1 ...
- AVL树(查找、插入、删除)——C语言
AVL树 平衡二叉查找树(Self-balancing binary search tree)又被称为AVL树(AVL树是根据它的发明者G. M. Adelson-Velskii和E. M. Land ...
随机推荐
- python异常
Std 异常 异常名 描述 1 Exception 所有的异常 2 StopIteration 迭代器的next()方法不指向任何对象 3 SystemExit sys.exit() 函数执行 4 S ...
- PHP5.2至5.6的新增功能详解
截至目前(2014.2), PHP 的最新稳定版本是 PHP5.5, 但有差不多一半的用户仍在使用已经不在维护 [注] 的 PHP5.2, 其余的一半用户在使用 PHP5.3 [注]. 因为 PHP ...
- 基于Qt5.5.0的sql,C++备忘录软件的编写
我的第一个软件. 基于Qt5.5.0的 sql ,C++备忘录软件version1.0的编写 我用的Qt版本是5.5.0免配置编译器的版本,这里附上我使用的软件下载地址:http://download ...
- IE10、IE11 User-Agent 网站无法写入Cookie 问题[转]
你是否遇到过当使用一个涉及到Cookie操作的网站或者管理系统时,IE 6.7.8.9下都跑的好好的,唯独到了IE10.11这些高版本浏览器就不行了?好吧,这个问题码农连续2天内遇到了2次.那么,我们 ...
- 买错的电影票,含着泪也得看-LAMP搭建&Linux基础
hi 没说过,上周五室友过生请客,在龙湖里吃嗨了喝爽了,回去的路上侃侃而谈.说好的这周一起去看年内最后的大片,火星救援的,谁知道老子眼神不好,买错了电影的时间...把周六的约定提前到了今儿个下午,ma ...
- stanford coursera 机器学习编程作业 exercise 5(正则化线性回归及偏差和方差)
本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归 ...
- JavaScript RegExp 对象
JavaScript RegExp 对象 RegExp 对象用于规定在文本中检索的内容. 什么是 RegExp? RegExp 是正则表达式的缩写. 当您检索某个文本时,可以使用一种模式来描述要检索的 ...
- 【程序员技术练级】熟悉Unix/Linux Shell和常见的命令行(一)文件系统结构和基本操作
作为程序猿,熟悉一些unix/linux命令行是非常必要的,因为部署服务的服务器现在基本上用的都是unix/linux系统,很少在windows上部署服务的. 今天我们就介绍一些在linux上的文件系 ...
- Sublime3安装过程及常用插件安装及常用快捷键
1 先去http://www.sublimetext.com/官网下载软件,然后网上找一个验证码,注册完成. 2 安装Package Control ,Package Control 插件是一个方 ...
- ubuntu不能登录图形用户界面,游客身份可登陆,命令行可登陆
ubuntu是13.04版本,我猜其他的版本解决办法大概也一样.当开机进入登陆界面后我们输入密码后并没有进入应该进入的图形用户界面,而是进入一个命令行界面并且一闪而过又回到了登录界面,而已游客的身份却 ...