Oozie分布式任务的工作流——Spark篇
Spark是现在应用最广泛的分布式计算框架,oozie支持在它的调度中执行spark。在我的日常工作中,一部分工作就是基于oozie维护好每天的spark离线任务,合理的设计工作流并分配适合的参数对于spark的稳定运行十分重要。
Spark Action
这个Action允许执行spark任务,需要用户指定job-tracker以及name-node。先看看语法规则:
语法规则
<workflow-app name="[WF-DEF-NAME]" xmlns="uri:oozie:workflow:0.3">
...
<action name="[NODE-NAME]">
<spark xmlns="uri:oozie:spark-action:0.1">
<job-tracker>[JOB-TRACKER]</job-tracker>
<name-node>[NAME-NODE]</name-node>
<prepare>
<delete path="[PATH]"/>
...
<mkdir path="[PATH]"/>
...
</prepare>
<job-xml>[SPARK SETTINGS FILE]</job-xml>
<configuration>
<property>
<name>[PROPERTY-NAME]</name>
<value>[PROPERTY-VALUE]</value>
</property>
...
</configuration>
<master>[SPARK MASTER URL]</master>
<mode>[SPARK MODE]</mode>
<name>[SPARK JOB NAME]</name>
<class>[SPARK MAIN CLASS]</class>
<jar>[SPARK DEPENDENCIES JAR / PYTHON FILE]</jar>
<spark-opts>[SPARK-OPTIONS]</spark-opts>
<arg>[ARG-VALUE]</arg>
...
<arg>[ARG-VALUE]</arg>
...
</spark>
<ok to="[NODE-NAME]"/>
<error to="[NODE-NAME]"/>
</action>
...
</workflow-app>
prepare元素
它里面可以执行删除文件或者创建目录的操作,比如
<delete path="hdfs://xxxx/a"/>
<mkdir path="hdfs://xxxx"/>
一般来说,离线的spark任务最重都会生成一些数据,这些数据可能存储到数据库中,也可能直接存储到hdfs,如果存储到hdfs就涉及到清除目录了。比如你可能在测试环境需要频繁的重复运行spark任务,那么每次都需要清除目录文件,创建新的目录才行。
job-xml
spark 任务的参数也可以放在job-xml所在的xml中。
confugration
这里面的配置的参数将会传递给spark任务。
master
spark运行的模式,表示spark连接的集群管理器。默认可以使spark的独立集群(spark://host:port)或者是mesos(mesos://host:port)或者是yarn(yarn),以及本地模式local
mode
因为spark任务也可以看做主节点和工作节点模式,主节点就是驱动程序。这个驱动程序既可以运行在提交任务的机器,也可以放在集群中运行。
这个参数就是用来设置,驱动程序是以客户端的形式运行在本地机器,还是以集群模式运行在集群中。
name
spark应用的名字
class
spark应用的主函数
jar
spark应用的jar包
spark-opts
提交给驱动程序的参数。比如--conf key=value
或者是在oozie-site.xml中配置的oozie.service.SparkConfiguationService.spark.configurations
。
arg
这个参数是用来提交给spark应用的参数
例子
官网给出的例子:
<workflow-app name="sample-wf" xmlns="uri:oozie:workflow:0.1">
...
<action name="myfirstsparkjob">
<spark xmlns="uri:oozie:spark-action:0.1">
<job-tracker>foo:8021</job-tracker>
<name-node>bar:8020</name-node>
<prepare>
<delete path="${jobOutput}"/>
</prepare>
<configuration>
<property>
<name>mapred.compress.map.output</name>
<value>true</value>
</property>
</configuration>
<master>local[*]</master>
<mode>client<mode>
<name>Spark Example</name>
<class>org.apache.spark.examples.mllib.JavaALS</class>
<jar>/lib/spark-examples_2.10-1.1.0.jar</jar>
<spark-opts>--executor-memory 20G --num-executors 50</spark-opts>
<arg>inputpath=hdfs://localhost/input/file.txt</arg>
<arg>value=2</arg>
</spark>
<ok to="myotherjob"/>
<error to="errorcleanup"/>
</action>
...
</workflow-app>
我自己工作时的例子:
<action name="NODE1">
<spark xmlns="uri:oozie:spark-action:0.1">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<master>yarn</master>
<mode>cluster</mode>
<name>NODE1</name>
<class>com.test.NODE1_Task</class>
<jar>/lib/dw.jar</jar>
<spark-opts>--executor-memory 1G --num-executors 6 --executor-cores 1 --conf spark.storage.memoryFraction=0.8</spark-opts>
<arg>参数1</arg>
<arg>参数2</arg>
<arg>参数3</arg>
</spark>
</action>
日志
spark action日志会重定向到oozie的mapr启动程序的stdout/stderr中。
通过oozie的web控制条,可以看到spark的日志。
spark on yarn
如果想要把spark运行在yarn上,需要按照下面的步骤执行:
- 在spark action中加载spark-assembly包
- 指定master为yarn-client或者yarn-master
为了确保spark工作在spark历史服务器中可以查到,需要保证在--conf中或者oozie.service.SparkConfiturationService.spark.configrations
中设置下面的三个参数:
- spark.yarn.historyServer.address=http://spark-host:18088
- spark.eventLog.dir=hdfs://NN:8020/user/spark/applicationHistory
- spark.eventLog.enabled=true
spark action的schema
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:spark="uri:oozie:spark-action:0.1" elementFormDefault="qualified"
targetNamespace="uri:oozie:spark-action:0.1"> <xs:element name="spark" type="spark:ACTION"/>
<xs:complexType name="ACTION">
<xs:sequence>
<xs:element name="job-tracker" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="name-node" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="prepare" type="spark:PREPARE" minOccurs="0" maxOccurs="1"/>
<xs:element name="job-xml" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="configuration" type="spark:CONFIGURATION" minOccurs="0" maxOccurs="1"/>
<xs:element name="master" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="mode" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="class" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="jar" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="spark-opts" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="arg" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="CONFIGURATION">
<xs:sequence>
<xs:element name="property" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="value" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="description" minOccurs="0" maxOccurs="1" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="PREPARE">
<xs:sequence>
<xs:element name="delete" type="spark:DELETE" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="mkdir" type="spark:MKDIR" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="DELETE">
<xs:attribute name="path" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="MKDIR">
<xs:attribute name="path" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>
Oozie分布式任务的工作流——Spark篇的更多相关文章
- Oozie分布式任务的工作流——邮件篇
在大数据的当下,各种spark和hadoop的框架层出不穷.各种高端的计算框架,分布式任务如乱花般迷眼.你是否有这种困惑!--有了许多的分布式任务,但是每天需要固定时间跑任务,自己写个调度,既不稳定, ...
- Oozie分布式任务的工作流——脚本篇
继前一篇大体上翻译了Email的Action配置,本篇继续看一下Shell的相关配置. Shell Action Shell Action可以执行Shell脚本命令,工作流会等到shell完全执行完毕 ...
- Oozie分布式任务的工作流——Sqoop篇
Sqoop的使用应该是Oozie里面最常用的了,因为很多BI数据分析都是基于业务数据库来做的,因此需要把mysql或者oracle的数据导入到hdfs中再利用mapreduce或者spark进行ETL ...
- 大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...
- 分布式协调服务Zookeeper扫盲篇
分布式协调服务Zookeeper扫盲篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 身为运维工程师对kubernetes(k8s)可能比较熟,那么etcd(go语言实现)分布式协 ...
- 【转帖】HBase读写的几种方式(二)spark篇
HBase读写的几种方式(二)spark篇 https://www.cnblogs.com/swordfall/p/10517177.html 分类: HBase undefined 1. HBase ...
- [源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇
[源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇 目录 [源码解析] PyTorch 分布式(8) -------- Distrib ...
- [源码解析] PyTorch分布式优化器(1)----基石篇
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...
- Oozie分布式工作流——流控制
最近又开始捅咕上oozie了,所以回头还是翻译一下oozie的文档.文档里面最重要就属这一章了--工作流定义. 一提到工作流,首先想到的应该是工作流都支持哪些工作依赖关系,比如串式的执行,或者一对多, ...
随机推荐
- Elasticsearch之java的基本操作一
摘要 接触ElasticSearch已经有一段了.在这期间,遇到很多问题,但在最后自己的不断探索下解决了这些问题.看到网上或多或少的都有一些介绍ElasticSearch相关知识的文档,但个人觉得 ...
- ASP.NET Core 中的那些认证中间件及一些重要知识点
前言 在读这篇文章之间,建议先看一下我的 ASP.NET Core 之 Identity 入门系列(一,二,三)奠定一下基础. 有关于 Authentication 的知识太广,所以本篇介绍几个在 A ...
- svn 常用命令总结
svn 命令篇 svn pget svn:ignore // 查看忽略项 svn commit -m "提交说明" // 提交修改 svn up(update) // 获取最新版本 ...
- jQuery学习之路(3)- 事件
▓▓▓▓▓▓ 大致介绍 jQuery增加了并扩展了基本的事件处理机制,不但提供了更加优雅的事件处理语法,而且极大地增强了事件处理能力 ▓▓▓▓▓▓ jQuery中的事件 ▓▓▓▓▓▓ 加载DOM 在j ...
- MVC常遇见的几个场景代码分享
本次主要分享几个场景的处理代码,有更好处理方式多多交流,相互促进进步:代码由来主要是这几天使用前端Ace框架做后台管理系统,这Ace是H5框架里面的控件效果挺多的,做兼容也很好,有点遗憾是控件效果基本 ...
- nodejs项目mysql使用sequelize支持存储emoji
nodejs项目mysql使用sequelize支持存储emoji 本篇主要记录nodejs项目阿里云mysql如何支持存储emoji表情. 因由 最近项目遇到用户在文本输入emoji进行存储的时候导 ...
- 对Thoughtworks的有趣笔试题实践
记得2014年在网上看到Thoughtworks的一道笔试题,当时觉得挺有意思,但是没动手去写.这几天又在网上看到了,于是我抽了一点时间写了下,我把程序运行的结果跟网上的答案对了一下,应该是对的,但是 ...
- 香蕉云APP,2016下半年开发日记
2016-6-17 数据库设计不应该过多依赖范式,适度的冗余可以加快搜索速度,在服务器的配置还可以的情况下,可以采用冗余来解决查找慢的问题.还一个是要选择好数据库引擎,例如 InnoDB 和 myi ...
- 企业做数据缓存是使用Memcached还是选Redis?
企业是使用Memcached还是选Redis? 在构建一款现代且由数据库驱动的Web应用程序并希望使其拥有更为出色的性能表现时,这个问题总会时不时出现.并给每一位开发人员带来困扰.在考虑对应用程序的性 ...
- Windos环境用Nginx配置反向代理和负载均衡
Windos环境用Nginx配置反向代理和负载均衡 引言:在前后端分离架构下,难免会遇到跨域问题.目前的解决方案大致有JSONP,反向代理,CORS这三种方式.JSONP兼容性良好,最大的缺点是只支持 ...