视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。

这里介绍下conv层。

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1 //学习率系数,最终的学习率为base_lr*lr_mult
}
param {
lr_mult: 2//偏置的学习率
}
convolution_param {
num_output: 20 //filter的个数
kernel_size: 5 //省略了pad,扩充边缘,可使卷积后的特征图与原图大小一样
stride:
weight_filler { //用xavier算来权值初始化
type: "xavier" //
}
bias_filler {
type: "constant"//为0
}
}
}

输入:n*c0*w0*h0

输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
 
 
 

更多参考:http://www.cnblogs.com/denny402/p/5071126.html

介绍了Convolution,pooling,LRN层的参数。

需要格外注意的是im2col层,以前在matlab中用过,没明白是什么,博主给的图描述的很清晰了。

这张图也揭示了多个特征图、多个卷积核时是如何运算的,一目了然。

caffe学习系列(4):视觉层介绍的更多相关文章

  1. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  2. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  3. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  4. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  5. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  6. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  7. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  8. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  9. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

  10. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

随机推荐

  1. electron打包

    1.全局安装electron-packager npm install -g electron-packager 2.在项目目录下执行命令 electron-packager ./ --platfor ...

  2. winform的tab跳到下一个

    先设置TabStop=true,再设置TabIndex的顺序

  3. 自然语言13_Stop words with NLTK

    https://www.pythonprogramming.net/stop-words-nltk-tutorial/?completed=/tokenizing-words-sentences-nl ...

  4. OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...

  5. FingerGestures for Unity3D

    FingerGestures http://fingergestures.fatalfrog.com

  6. PInvoke和Marshal的姿势

    PInvoke http://www.mono-project.com/docs/advanced/pinvoke/ https://msdn.microsoft.com/en-us/library/ ...

  7. ecshop 的transport.js 与jqueyr冲突

    1111 {insert_scripts files='common.js,global.js,transport.js'} <script type="text/javascript ...

  8. css教程

    网址:http://www.aa25.cn/layout/index.shtml

  9. tar: 由于前次错误,将以上次的错误状态退出

    1.安装cmake的源码包,出现以下错误提示: # tar -zxvf cmake-3.2.2.tar.gz cmake-/Source/cmCommandArgumentParser.cxx tar ...

  10. JDK自带方法实现AES对称加密

    请看代码. 1 package jdbc.pro.lin; 2 3 import java.security.InvalidAlgorithmParameterException; 4 import ...