前言:这几天一直都在研究模糊聚类。感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类。

一:模糊数学

我们大家都知道计算机其实只认识两个数字0,1。我们平时写程序其实也是这样if 1 then do.永远这种模式,在这种模式中,一个元素要么属于这个集合,要么不属于这个集合,但是对我们现在介绍的模糊集来说,某个元素可能部分属于这个集合,又可能部分属于另外的集合,显然,例如,一个男人(1表示),一个女人(0表示),但是随着科学技术的发展,出现了人妖这个生物(可能0.3属于男人,0.7属于女人).这样如果用0,1就显得不太恰当了,那我们该如何表示呢,且听我慢慢道来。

开始之前先介绍模糊数学几种不同的名称:

模糊集:给定一个论域 U ,那么从 U 到单位区间 [0,1] 的一个映射称为 U 上的一个模糊集,或 U 的一个模糊子集. 模糊集可以记为 A 。 映射(函数) μA(·) 或简记为 A(·) 叫做模糊集 A 的隶属函数。 对于每个 x ∈ U , μA(x) 叫做元素 x 对模糊集 A 的隶属度。

模糊逻辑:它是一种相对于传统是或者不是的二值逻辑而言的。例如下图:,如果这个人在B里面,那么很好理解,人在B里面为1,但是如果出现下列这种情况呢:

,显然用上述的逻辑就行不通了,但是可以这样表示在(A,B)=(0,6,0.4),o,6在A, 0,4在B,这样完美解决。其实拓展成3,4,5也都一样。类似于,我们看周星驰的赌侠,反派用电脑分析,牌的可能性。其实跟这个道理差不多

模糊矩阵:设R=(rijmxn,若0<=rij<=1,那么称该矩阵为模糊矩阵。若矩阵元素只有0,1的时候成为布尔矩阵。如果对角线上都是一,则这个矩阵称为自反矩阵、

模糊矩阵的关系以及并交与计算:

假设都是模糊矩阵。

交运算:

并运算:

余运算:

例子如下(画的比较丑,请见谅):

模糊矩阵的合成

为模糊矩阵,,为A与B的合成,其中为模糊矩阵的幂。

定义:若A为n阶方阵,定义:

首先模糊数学的基础就补充到这里了。下面来看看。FCM算法。

二 FCM算法

2.1 FCM算法简介

FCM算法首先是由E. Ruspini提出来的,后来J. C. Dunn与J. C. Bezdek将E. Ruspini算法从硬聚类算法推广成模糊聚类算法。FCM算法是基于对目标函数的优化基础上的一种数据聚类方法。聚类结果是每一个数据点对聚类中心的隶属程度,该隶属程度用一个数值来表示。FCM算法是一种无监督的模糊聚类方法,在算法实现过程中不需要人为的干预。这种算法的不足之处:首先,算法中需要设定一些参数,若参数的初始化选取的不合适,可能影响聚类结果的正确性;其次,当数据样本集合较大并且特征数目较多时,算法的实时性不太好。

2.2 FCM算法的实现原理

我们的FCM算法是从硬划分而来的。

硬划分FCM算法的目标函数: 。U表示原矩阵,p表示聚类中心,dik表示样本点xk与第i个类的样本原型pi之间的失真度,一般是用两个向量之间的距离表示。

软划分FCM的目标函数:。Uik表示xk与第i类样本的隶属度。

一般性模糊聚类分析的目标函数: ,其中m>1.dik是一种距离范数,可以表示为,A表示权重。

求解过程如下(把我以前写的截图发来):

得到:

求解聚类中心:

得到聚类中心:

FCM算法执行流程:

安利一波(百度脑图,这是我认为百度做的比较有良心的东西了。我这个就是用百度脑图画的)

三 FCM的Matlab实现

function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)

% 模糊 C 均值聚类 FCM: 从随机初始化划分矩阵开始迭代

% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)

% 输入:

% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,

% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量

% 的维数,N 为样本点的个数

% C: 聚类数,1

% plotflag: 聚类结果 2D/3D 绘图标记,0 表示不绘图,为缺省值

% M: 加权指数,缺省值为 2

% epsm: FCM 算法的迭代停止阈值,缺省值为 1.0e-6

% 输出:

% U: C×N 型矩阵,FCM 的划分矩阵

% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型

% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中

% 心 i 到样本点 j 的距离为 Dist(i,j)

% Cluster_Res: 聚类结果,共 C 行,每一行对应一类

% Obj_Fcn: 目标函数值

% iter: FCM 算法迭代次数

% See also: fuzzydist maxrowf fcmplot

if nargin<5

epsm=1.0e-6;

end

if nargin<4

M=2;

end

if nargin<3

plotflag=0;

end

[N,S]=size(Data);m=2/(M-1);iter=10000;

Dist(C,N)=0; U(C,N)=0; P(C,S)=0;

% 随机初始化划分矩阵

U0 = rand(C,N);

U0=U0./(ones(C,1)*sum(U0));

% FCM 的迭代算法

while true

% 迭代计数器

iter=iter+1;

% 计算或更新聚类中心 P

Um=U0.^M;

P=Um*Data./(ones(S,1)*sum(Um'))';

% 更新划分矩阵 U

for i=1:C

for j=1:N

Dist(i,j)=fuzzydist(P(i,:),Data(j,:));

end

end

U=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));

% 目标函数值: 类内加权平方误差和

if nargout>4 | plotflag

Obj_Fcn(iter)=sum(sum(Um.*Dist.^2));

end

% FCM 算法迭代停止条件

if norm(U-U0,Inf) break

end

U0=U;

end

% 聚类结果

if nargout > 3

res = maxrowf(U);

for c = 1:

v = find(res==c);

Cluster_Res(c,1:length(v))=v;

end

end

% 绘图

if plotflag

fcmplot(Data,U,P,Obj_Fcn);

end

我用的数据集聚类结果:

感觉效果好挺好的。

今天的模糊聚类就讲到这里了希望大家点个关注,以及批评指正。

机器学习笔记----Fuzzy c-means(FCM)模糊聚类详解及matlab实现的更多相关文章

  1. Ext.Net学习笔记22:Ext.Net Tree 用法详解

    Ext.Net学习笔记22:Ext.Net Tree 用法详解 上面的图片是一个简单的树,使用Ext.Net来创建这样的树结构非常简单,代码如下: <ext:TreePanel runat=&q ...

  2. Ext.Net学习笔记23:Ext.Net TabPanel用法详解

    Ext.Net学习笔记23:Ext.Net TabPanel用法详解 上面的图片中给出了TabPanel的一个效果图,我们来看一下代码: <ext:TabPanel runat="se ...

  3. Elastic Stack 笔记(六)Elasticsearch5.6 搜索详解

    博客地址:http://www.moonxy.com 一.前言 Elasticsearch 主要包含索引过程和搜索过程. 索引过程:一条文档被索引到 Elasticsearch 之后,默认情况下 ES ...

  4. web前端学习(三)css学习笔记部分(4)-- CSS选择器详解

    4.  元素选择器详解 4.1  元素选择器 4.2  选择器分组 用英文逗号","相连,使用相同的样式表 使用通配符对所有元素进行通用设定. 4.3  类选择器详解 4.3.1. ...

  5. Mybatis-生成逆向工程后对数据库的模糊查询详解

    MyBatis-使用逆向工程中方法进行模糊查询 1.应用mybatis逆向工程会大大的提高我们的开发效率,如何应用mabatis 逆向生成的代码进行模糊查询那. 2.首先看一下pojo 层中examp ...

  6. [原创]java WEB学习笔记55:Struts2学习之路---详解struts2 中 Action,如何访问web 资源,解耦方式(使用 ActionContext,实现 XxxAware 接口),耦合方式(通过ServletActionContext,通过实现 ServletRequestAware, ServletContextAware 等接口的方式)

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  7. Ext.Net学习笔记07:Ext.Net DirectMethods用法详解

    使用DirectMethods在JS中调用C#方法 我承认,这个标题有点噱头,其实应该是通过DirectMethods,在JS中通过异步调用的方式执行服务器端的方法. 来看一个例子吧: [Direct ...

  8. Spark应用HanLP对中文语料进行文本挖掘--聚类详解教程

    软件:IDEA2014.Maven.HanLP.JDK: 用到的知识:HanLP.Spark TF-IDF.Spark kmeans.Spark mapPartition; 用到的数据集:http:/ ...

  9. 基于机器学习和TFIDF的情感分类算法,详解自然语言处理

    摘要:这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM.RF.LR.Boosting)对比 本文分享自华为云社区<[Python人工智能] ...

随机推荐

  1. Google C++单元测试框架GoogleTest---Google Mock简介--概念及基础语法

    就在昨天终于做了gtest的分享,我的预研工作终于结束了,感觉离我辞职的日子不远了,毕竟是专注java二百年啊,要告别实习啦.. 这篇是GoogleMock的简介文档,会在后边附带一个自己的例子. 一 ...

  2. centos直接yum安装nginx

    Ubuntu下安装nginx,直接apt-get install nginx就行了,很方便. 但是今天装了CentOS6.2,直接yum install nginx不行,要先处理下源,下面是安装完整流 ...

  3. EXD_BAD_ACCEEE

    iOS开发过程中,普通的bug通常较容易定位问题所在,但是,EXD_BAD_ACCEEE问题却比较不易查找问题.本文记录下解决EXD_BAD_ACCEEE问题的过程.首先说一下 EXC_BAD_ACC ...

  4. AEAI WM V1.5.0 升级说明,开源工作管理系统

    1.升级说明 本次AEAI WM升级内容主要是针对数通畅联推出AEAI ECP企业云联平台而升级的,其中对AEAI WM的各模块进行扩展,同时增加了移动门户版功能及为AEAI ECP提供数据服务接口. ...

  5. MP3文件信息批量更改器

    以前(估计是2003年)编写一个MP3文件信息批量更改器MP3TagChanger,现放上来参考.(VB6编码) 使用方法很简单,会Winamp或者千千静听的就懂使用. http://pan.baid ...

  6. 父div高度不能根据子div高度自动变化的解决方案

    <div id="parent"> <div id="content"> </div> </div> 当cont ...

  7. Spark作业调度阶段分析

    Spark作为分布式的大数据处理框架必然或涉及到大量的作业调度,如果能够理解Spark中的调度对我们编写或优化Spark程序都是有很大帮助的: 在Spark中存在转换操作(Transformation ...

  8. github的使用

    1.gitbub概念 github是一个基于git的代码托管平台,付费用户可以建私人仓库,免费用户用公共仓库,但是代码公开. 2.注册账户以及创建仓库 在github官网地址:https://gith ...

  9. 【C++】多态性(函数重载与虚函数)

    多态性就是同一符号或名字在不同情况下具有不同解释的现象.多态性有两种表现形式: 编译时多态性:同一对象收到相同的消息却产生不同的函数调用,一般通过函数重载来实现,在编译时就实现了绑定,属于静态绑定. ...

  10. java.util.ConcurrentModificationException 解决办法(转载)

    今天在项目的中有一个需求,需要在一个Set类型的集合中删除满足条件的对象,这时想当然地想到直接调用Set的remove(Object o)方法将指定的对象删除即可,测试代码:   public cla ...