matlab处理手写识别问题
初学神经网络算法--梯度下降、反向传播、优化(交叉熵代价函数、L2规范化) 柔性最大值(softmax)还未领会其要义,之后再说
有点懒,暂时不想把算法重新总结,先贴一个之前做过的反向传播的总结ppt






其实python更好实现些,不过我想好好学matlab,就用matlab写了
然后是算法源码,第一个啰嗦些,不过可以帮助理解算法
function bpback1(ny,eta,mini_size,epoch)
%ny:隐藏层为1层,神经元数目为ny;eta:学习速率;mini_size:最小采样;eopch:迭代次数
%该函数为梯度下降+反向传播
%images
[numimages,images]=bpimages('train-images.idx3-ubyte');
[n_test,test_data_x]=bpimages('t10k-images.idx3-ubyte');
%labels
[numlabels,labels]=bplabels('train-labels.idx1-ubyte');
[n_test,test_data_y]=bplabels('t10k-labels.idx1-ubyte');
%init w/b
%rand('state',sum(100*clock));
%ny=30;eta=0.01;mini_size=10;
w1=randn(ny,784);
b1=randn(ny,1);
w2=randn(10,ny);
b2=randn(10,1);
for epo=1:epoch
for nums=1:numimages/mini_size
for num=(nums-1)*mini_size+1:nums*mini_size
x=images(:,num);
y=labels(:,num);
net2=w1*x; %input of net2
for i=1:ny
hidden(i)=1/(1+exp(-net2(i)-b1(i)));%output of net2
end
net3=w2*hidden'; %input of net3
for i=1:10
o(i)=1/(1+exp(-net3(i)-b2(i)));%output of net3
end
%back
for i=1:10
delta3(i)=(y(i)-o(i))*o(i)*(1-o(i));%delta of net3
end
for i=1:ny
delta2(i)=delta3*w2(:,i)*hidden(i)*(1-hidden(i));%delta of net2
end
%updata w/b
for i=1:10
for j=1:ny
w2(i,j)=w2(i,j)+eta*delta3(i)*hidden(j)/mini_size;
end
end
for i=1:ny
for j=1:784
w1(i,j)=w1(i,j)+eta*delta2(i)*x(j)/mini_size;
end
end
for i=1:10
b2(i)=b2(i)+eta*delta3(i);
end
for i=1:ny
b1(i)=b1(i)+eta*delta2(i);
end
end
end
%calculate sum of error
%accuracy
sum0=0;
for i=1:1000
x0=test_data_x(:,i);
y0=test_data_y(:,i);
a1=[];
a2=[];
s1=w1*x0;
for j=1:ny
a1(j)=1/(1+exp(-s1(j)-b1(j)));
end
s2=w2*a1';
for j=1:10
a2(j)=1/(1+exp(-s2(j)-b2(j)));
end
a2=a2';
[m1,n1]=max(a2);
[m2,n2]=max(y0);
if n1==n2
sum0=sum0+1;
end
%e=o'-y;
%sigma(num)=e'*e;
sigma(i)=sumsqr(a2-y0); %代价为误差平方和
end
sigmas(epo)=sum(sigma)/(2*1000);
fprintf('epoch %d:%d/%d\n',epo,sum0,1000);
end
plot(sigmas);
xlabel('epoch');
ylabel('cost on the training_data');
end


function bpback2(ny,eta,mini_size,epoch,numda)
%ny:隐藏层为1层,神经元数目为ny;eta:学习速率;mini_size:最小采样;eopch:迭代次数
%bpback的优化,包括L2规范化、交叉熵代价函数的引入---结果证明该优化非常赞!
%images
[numimages,images]=bpimages('train-images.idx3-ubyte');
[n_test,test_data_x]=bpimages('t10k-images.idx3-ubyte');
%labels
[numlabels,labels]=bplabels('train-labels.idx1-ubyte');
[n_test,test_data_y]=bplabels('t10k-labels.idx1-ubyte');
%init w/b
%ny=30;eta=0.05;mini_size=10;epoch=10;numda=0.1;
rand('state',sum(100*clock));
w1=randn(ny,784)/sqrt(784);
b1=randn(ny,1);
w2=randn(10,ny)/sqrt(ny);
b2=randn(10,1);
for epo=1:epoch
for nums=1:numimages/mini_size
for num=(nums-1)*mini_size+1:nums*mini_size
x=images(:,num);
y=labels(:,num);
net2=w1*x; %input of net2
hidden=1./(1+exp(-net2-b1));%output of net2
net3=w2*hidden; %input of net3
o=1./(1+exp(-net3-b2));%output of net3
%back
delta3=(y-o);%delta of net3 由于交叉熵代价函数的引入,偏导被消去
delta2=w2'*delta3.*(hidden.*(1-hidden));%delta of net2
%updata w/b
w2=w2*(1-eta*numda/numimages)+eta*delta3*hidden'/mini_size; %L2规范化
w1=w1*(1-eta*numda/numimages)+eta*delta2*x'/mini_size;
b2=b2+eta*delta3/mini_size;
b1=b1+eta*delta2/mini_size;
end
end
%calculate sum of error
%accuracy
sum0=0;
for i=1:1000
x0=test_data_x(:,i);
y0=test_data_y(:,i);
a1=[];
a2=[];
a1=1./(1+exp(-w1*x0-b1));
a2=1./(1+exp(-w2*a1-b2));
[m1,n1]=max(a2);
[m2,n2]=max(y0);
if n1==n2
sum0=sum0+1;
end
%e=o'-y;
%sigma(num)=e'*e;
sigma(i)=m2*log(m1)+(1-m2)*log(1-m1); %计算代价cost
end
sigmas(epo)=-sum(sigma)/1000; %cost求和
fprintf('epoch %d:%d/%d\n',epo,sum0,1000);
end
plot(sigmas);
xlabel('epoch');
ylabel('cost on the training_data');
end


好好学习,天天向上,话说都没有表情用,果然是程序猿的世界,我还是贴个表情吧

matlab处理手写识别问题的更多相关文章
- 基于MATLAB的手写公式识别(9)
基于MATLAB的手写公式识别(9) 1.2图像的二值化 close all; clear all; Img=imread('drink.jpg'); %灰度化 Img_Gray=rgb2gray(I ...
- 基于MATLAB的手写公式识别(6)
基于MATLAB的手写公式识别 2021-03-29 10:24:51 走通了程序,可以识别"心脑血管这几个字",还有很多不懂的地方. 2021-03-29 12:20:01 tw ...
- 基于MATLAB的手写公式识别(5)
基于MATLAB的手写公式识别 总结一下昨天一天的工作成果: 获得了大致的识别过程. 一个图像从生肉到可以被处理需要经过预处理(灰质化.增加对比度.中值过滤.膨胀或腐蚀.闭环运算). 掌握了相关函数的 ...
- 基于MATLAB的手写公式识别(3)
基于MATLAB的手写公式识别 图像的膨胀化,获取边缘(思考是否需要做这种处理,初始参考样本相对简单) %膨胀 imdilate(dilate=膨胀/扩大) clc clear A1=imread(' ...
- 基于MATLAB的手写公式识别(2)
基于MATLAB的手写公式识别 图像的预处理(除去噪声.得到后续定位分割所需的信息.) 预处理其本质就是去除不需要的噪声信息,得到后续定位分割所需要的图像信息.图像信息在采集的过程中由于天气环境的影响 ...
- 基于MATLAB的手写公式识别(1)
基于MATLAB的手写公式识别 reason:课程要求以及对MATLAB强大生命力的探索欲望: plan date:2021/3/28-2021/4/12 plan: 进行材料搜集和思路整理: 在已知 ...
- 【Win 10 应用开发】手写识别
记得前面(忘了是哪天写的,反正是前些天,请用力点击这里观看)老周讲了一个14393新增的控件,可以很轻松地结合InkCanvas来完成涂鸦.其实,InkCanvas除了涂鸦外,另一个大用途是墨迹识别, ...
- JS / Egret 单笔手写识别、手势识别
UnistrokeRecognizer 单笔手写识别.手势识别 UnistrokeRecognizer : https://github.com/RichLiu1023/UnistrokeRecogn ...
- (手写识别) Zinnia库及其实现方法研究
Zinnia库及其实现方法研究 (转) zinnia是一个开源的手写识别库.采用C++实现.具有手写识别,学习以及文字模型数据制作转换等功能. 项目地址 [http://zinnia.sourcefo ...
随机推荐
- 7.桥接模式(Bridge Pattern)
动机(Motivate): 在软件系统中,某些类型由于自身的逻辑,它具有两个或多个维度的变化,那么如何应对这种“多维度的变化”?如何利用面向对象的技术来使得该类型能够轻松的沿着多个方向进行变化, ...
- git的那些事
前言:记得在想学习git的时候,一直停留在思想的层面,总没有弄清楚它的运行机制,经常与github混淆,还好找到了一个好的教程,带我领略了git的风采 (一)git的优点 git的优点:版本控制在本地 ...
- linux kill 命令【待完善】【转】
kill 命令用来处理进程, 在linux中即可使用kill -9 pid 杀死进程 , 也可使用kill -KILL pid 等价的命令来执行. HUP 1 终端断线 INT 2 中断(同 Ctrl ...
- UEditor js动态创建和textarea中渲染【原】
UEditor动态创建和textarea中渲染 http://ueditor.baidu.com/website/examples/textareaDemo.html <!DOCTYPE> ...
- Python复习笔记(五)面向对象
1. __init__方法 # 1. 为对象在内存 中分配空间 -- 创建对象 # 2. 为对象属性 设置初始值 -- 初始化方法(init)+-------------- # 3. __init__ ...
- NodeJs 学习笔记(一)Wedding 项目搭建
说明:Ubuntu16.04 自带的NodeJs版本太低,安装包更新不了,只能编译安装了 一.NodeJs编译安装 下载:https://nodejs.org/en/download/ 修改目录权限: ...
- Git与GitHub学习笔记(一)如何删除github里面的文件夹?
按照以下步骤即可(本地删除) 1. git pull you git url2. git checkout 3. rm -r dirName4. git add --all5. git commit ...
- tedu训练营day03
Day03笔记1.作业 1.假如你现在25周岁,每年365天,计算你过了多少个星期天(大概数字) 提示 :地板除 2.毕业薪资为10000元,每年涨20%,十年之后你的薪资为多少元? 提示: 幂运算( ...
- window.open post
前端代码 expExcel(){ window.open(PreURL+'company_list_exp?keyword='+this.keyword+'&area_code='+this. ...
- 对空间数据(Shape)重新排序
打开ArcToolBox,数据管理工具->常规(General)->排序