【ZJOI2007】粒子运动
若此段起始点为(stx,sty),速度为(vx,vy),设碰撞时间为t,则(stx+vx·t)²+(sty+vy·t)²=r² → stx²+vx²·t²+2·stx·vx·t+sty²+vy²·t²+2·sty·vy·t-r²=0 → (vx²+vy²)·t²+(2·stx·vx+2·sty·vy)·t+(stx²+sty²-r²)=0,我们设a=vx²+vy²,b=2·stx·vx+2·sty·vy,c=stx²+sty²-r²,则t=-b+sqrt(b²-4ac)/2a(舍去小解),再通过t算出某粒子在某段与圆下次碰撞的位置即可。
若与圆的碰撞点为(x,y),原速为(x1,x2),反弹后为(x2,y2),不难得出atan2(x2,y2)-atan2(x,y)=atan2(x,y)-atan2(x1,y1)(角相等),即atan2(x2,y2)=2·atan2(x,y)-atan2(x1,y1),设k=x2/y2,则k=tan(2·atan2(x,y)-atan2(x1,y1)),因为速度相同,所以x1²+y1²=x2²+y2²,设z=x1²+y1²,则y2²+k²·y2²=z → (k²+1)·y2²=z → y2=sqrt(x1²+y1²/k²+1),然后通过y2求出x2,需要注意的是,(-x2,-y2)在这里同样成立,我们可以通过带入一个点判断是否在圆内来判断取哪个解。
【某粒子在某次碰撞后vx,vy的变化】
设tt=max(t1,t2)(t1,t2分别为两段开始的时刻),若(x1,y1),(x2,y2)分别为tt时刻两粒子的坐标,(vx1,vy1),(vx2,vy2)分别为两段的速度,y为两粒子间距离的平方,y=((x1+vx1·t)-(x2+vx2·t))²+((y1+vy1·t)-(y2+vy2·t))² → y=((x1-x2)+(vx1-vx2)·t)²+((y1-y2)+(vy1-vy2)·t)²我们设xx=x1-x2,yy=y1-y2,vx=vx1-vx2,vy=vy1-vy2,那么y=(xx+vx·t)²+(yy+vy·t)² → y=xx²+vx²·t²+2·xx·vx·t+yy²+vy²·t²+2·yy·vy·t → y=(vx²+vy²)·t²+(2·xx·vx+2·yy·vy)·t+(xx²+yy²),再设a=vx²+vy²,b=2·xx·vx+2·yy·vy,c=xx²+yy²,然后求出最小值y3=4ac-b²/4a即为历史最近距离
【粒子a的某一段与粒子b的某一段的历史最近距离】
推荐:https://blog.csdn.net/lych_cys/article/details/50785713
【ZJOI2007】粒子运动的更多相关文章
- bzoj1094[ZJOI2007]粒子运动 计算几何
1094: [ZJOI2007]粒子运动 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 658 Solved: 164[Submit][Status ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- 【BZOJ1060】[ZJOI2007]时态同步 树形DP
[BZOJ1060][ZJOI2007]时态同步 Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3-.进行标号.电路 ...
- BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)
题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...
- 【BZOJ】【1059】【ZJOI2007】矩阵游戏
二分图完美匹配/匈牙利算法 如果a[i][j]为黑点,我们就连边 i->j ,然后跑二分图最大匹配,看是否有完美匹配. <_<我们先考虑行变换:对于第 i 行,如果它第 j 位是黑点 ...
- bzoj1058: [ZJOI2007]报表统计
set.操作:insert(u,v)在u后面插入v,若u后面已插入过,在插入过的后面插入.mingap求出序列两两之间差值的最小值.minsortgap求出排序后的序列两两之间的最小值.用multis ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
随机推荐
- linux安装php7.2.7
1.下载php 官网下载:#wget http://cn2.php.net/get/php-7.2.7.tar.gz/from/a/mirror.(ps:应该是这么下载的,但是我下载的都是一个mirr ...
- Front-end Job Interview Questions
Front-end Job Interview Questions 前端面试 https://github.com/h5bp/Front-end-Developer-Interview-Questio ...
- QTP 自动化测试--定义变量
1 Dim suffixsuffix=get_currentdatetxt("001")
- SpringBoot之修改单个文件后立刻生效
问题: 在使用SpringBoot进行开发时,如果修改了某个文件比如前端页面html,不能立刻起效. 解决: 在idea中打开修改后的文件,使用快捷键Ctrl+Shift+F9 进行重新编译,然后刷新 ...
- 使用coobird Thumbnailator生成缩略图
pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...
- java excel Workbook API
此文摘自:http://blog.sina.com.cn/zenyunhai 1. int getNumberOfSheets() 获得工作薄(Workbook)中工作表(Sheet)的个数,示例: ...
- POJ1151-扫面线+线段树+离散化//入门题
比较水的入门题 记录矩形竖边的x坐标,离散化排序.以被标记的边建树. 扫描线段树,查询线段树内被标记的边.遇到矩形的右边就删除此边 每一段的面积是查询结果乘边的横坐标之差,求和就是答案 #includ ...
- springboot 简单搭建
springboot的入门请参考:https://blog.csdn.net/hanjun0612/article/details/81538449 这里就简单看下搭建: 一,看一下项目结构: 创建一 ...
- robotframework测试用例加入注释
*** Variables ***${HOST} 192.168.132.135${USER} username*** Test Cases ***Simple [Documentation] Sim ...
- PIGS POJ - 1149(水最大流)
题意: 有M个猪圈,每个猪圈里初始时有若干头猪.一开始所有猪圈都是关闭的.依次来了N个顾客,每个顾客分别会打开指定的几个猪圈,从中买若干头猪.每个顾客分别都有他能够买的数量的上限.每个顾客走后,他打开 ...