题目描述

小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

题解

先考虑一个dp,就是设dp[i][j]表示已经构造好了前i个元素,它们的乘积为j的方案数。

转移:dp[i][j]=dp[i-1][k]*f[j/k] 

看起来很像是卷积然鹅不是,他们中间是乘法关系而不是加法。

这时我们考虑一个限制,就是m是一个质数。

它有什么好处,就是当x,y互质时,那么x1x2....xy-1会遍历0-y-1的所有数。、

这样我们可以把1-m-1代换一下。

dp[i][j]=dp[i-1][k]*f[l] (gkgl=gj)

因为存在一一对应的关系,所以我们就可以代换了。

然后就变成了卷积的形式,多项式快速幂解决,因为每层的转移都是一样的。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 32002
using namespace std;
typedef long long ll;
const int mod=;
const int G=;
const int Gi=;
ll l,ny2,x,rev[N],L,n,m,a[N],b[N],s,g,c[N],tran[N],f[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,ll y){
ll ans=;
while(y){if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;}
return ans;
}
inline void NTT(ll *a,int tag){
for(int i=;i<l;++i)if(i>rev[i])swap(a[i],a[rev[i]]);
for(int i=;i<l;i<<=){
ll wn=power(tag==?G:Gi,(mod-)/(i<<));
for(int j=;j<l;j+=(i<<)){
ll w=;
for(int k=;k<i;++k,w=w*wn%mod){
int x=a[j+k],y=a[i+j+k]*w%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
}
inline void ch(ll a[],ll *b){
memcpy(c,a,sizeof(c));
NTT(c,);NTT(b,);
for(int i=;i<l;++i)b[i]=b[i]*c[i]%mod;
NTT(b,-);
for(int i=;i<l;++i)b[i]=b[i]*ny2%mod;
for(int i=m;i<(m<<);++i)(b[i-m]+=b[i])%=mod,b[i]=;
}
inline ll ksm(ll x,ll y,ll m){
ll ans=;
while(y){if(y&)ans=ans*x%m;x=x*x%m;y>>=;}
return ans;
}
inline int get_g(int m){
for(int i=;i<=m-;++i)if((m-)%i==)f[++f[]]=i;
for(int i=;;++i){
bool x=;
for(int j=;j<=f[]&&x;++j)if(ksm(i,f[j],m)==)x=;
if(x)return i;
}
}
int main(){
n=rd();m=rd();x=rd();s=rd();
g=get_g(m);
for(ll i=,k=;i<m-;++i,k=k*g%m)tran[k]=i;
m--;
l=;L=;
while(l<(m<<))l<<=,L++;int y;
ny2=power(l,mod-);
for(int i=;i<l;++i)rev[i]=(rev[i>>]>>)|((i&)<<(L-));
for(int i=;i<=s;++i){
y=rd();
if(y)a[tran[y]]=;
}
b[tran[]]=;
while(n){
if(n&)ch(a,b);
ch(a,a);n>>=;
}
cout<<b[tran[x]];
return ;
}

原根的求法:

暴力枚举,然后枚举m-1的所有质因子,若i^p==1则不是原根。

inline int get_g(int m){
for(int i=;i<=m-;++i)if((m-)%i==)f[++f[]]=i;
for(int i=;;++i){
bool x=;
for(int j=;j<=f[]&&x;++j)if(ksm(i,f[j],m)==)x=;
if(x)return i;
}
}

[SDOI2015]序列统计(多项式快速幂)的更多相关文章

  1. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  2. P3321 [SDOI2015]序列统计 FFT+快速幂+原根

    \(\color{#0066ff}{ 题目描述 }\) 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这 ...

  3. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  4. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  5. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  6. 【洛谷3321_BZOJ3992】[SDOI2015]序列统计(原根_多项式)

    题目: 洛谷3321 分析: 一个转化思路比较神(典型?)的题-- 一个比较显然的\(O(n^3)\)暴力是用\(f[i][j]\)表示选了\(i\)个数,当前积在模\(m\)意义下为\(j\)的方案 ...

  7. 3992: [SDOI2015]序列统计

    3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n ...

  8. 【题解】SDOI2015序列统计

    [题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...

  9. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

随机推荐

  1. 07-nodejs中npm的使用

    NPM是什么? 简单的说,npm就是JavaScript的包管理工具.类似Java语法中的maven,gradle,python中的pip. 安装 傻瓜式的安装. 第一步:打开https://node ...

  2. Docker -d : Running modprobe bridge nf_nat failed with message: exit status 1

    nf_nat 是做什么用的 - DockOne.iohttp://dockone.io/question/1384 docker-py的配置与使用 - openxxs - 博客园http://www. ...

  3. Is there a way to avoid undeployment memory leaks in Tomcat?

    tomcat 项目部署问题 - yshy - 博客园http://www.cnblogs.com/yshyee/p/3973293.html jsp - tomcat - their classes ...

  4. Linux bc 命令简单学习

    1. bash里面能够实现比较简单的四则运算 echo $((*)) 注意是 双括号+ $ 地址符号. 2. 但是比较复杂的 可能就难以为继了 比如不支持精度 3. 所以这里面需要使用 bc 命令来执 ...

  5. cookie路径概念理解

    .创建一个cookie并设置 cookie的有效路径: $.cookie('the_cookie', 'the_value', { expires: 7, path: '/' }); 注:在默认情况下 ...

  6. flutter-StatelessWidget与StatefulWidget

    StatelessWidget和StatefulWidget是flutter的基础组件,日常开发中自定义Widget都是选择继承这两者之一. 两者的区别在于状态的改变,StatelessWidget面 ...

  7. python之路--MySQL多表查询

    一 介绍 我们在写项目的时候一般都会建一个数据库,数据库里面会存很多的表,不可能把所有的数据都放在一张表里,因为分表来存数据节省空间,数据的组织结构更清晰,解耦和程度更高,但是这些表本质上还不是一个整 ...

  8. WPF一步步实现完全无边框自定义Window(附源码)

    在我们设计一个软件的时候,有很多时候我们需要按照美工的设计来重新设计整个版面,这当然包括主窗体,因为WPF为我们提供了强大的模板的特性,这就为我们自定义各种空间提供了可能性,这篇博客主要用来介绍如何自 ...

  9. spring 启动脚本分析

    参考:JVM 参数使用总结 参考:java  -Xms -Xmx -XX:PermSize -XX:MaxPermSize 参考:JVM调优总结 -Xms -Xmx -Xmn -Xss 参考:JAVA ...

  10. Python的web编程

    1.urlparse模块 urlparse.urlparse()      将一个url转化为(prot_sch, net_loc, path, params, query, frag)的元组 url ...