maomao的fft板子
\(QwQ\)
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 4000010
using namespace std;
const double Pi = acos(-1.0);
struct complex {
double x, y;
complex (double xx = 0, double yy = 0) {
x = xx, y = yy;
}
}a[MAXN], b[MAXN], c[MAXN];
complex operator + (complex a, complex b) {
return complex(a.x + b.x , a.y + b.y);
}
complex operator - (complex a, complex b) {
return complex(a.x - b.x , a.y - b.y);
}
complex operator * (complex a, complex b) {
return complex(a.x * b.x - a.y * b.y , a.x * b.y + a.y * b.x);
}
int N, M, l, limit = 1, r[MAXN];
void fast_fast_tle (complex *A, int type) {
for (int i = 0; i < limit; i++) {
if (i < r[i]) {
swap(A[i], A[r[i]]);
}
//effect as A[i] = A_original[r[i]];
}
for (int mid = 1; mid < limit; mid <<= 1) {
complex Wn (cos(Pi / mid) ,type * sin(Pi / mid)); //w (1, mid);
for (int R = mid << 1, j = 0; j < limit; j += R) {
//R -> len of sequence
//j -> last position
complex w(1, 0); //w (0, mid);
for (int k = 0; k < mid; k++, w = w * Wn) {
complex x = A[j + k], y = w * A[j + mid + k];
A[j + k] = x + y;
A[j + mid + k] = x - y;
}
//mid对应当前的中间值,对应下一次的n。
}
}
}
int main () {
cin >> N >> M;
for (int i = 0; i <= N; i++) cin >> a[i].x;
for (int i = 0; i <= M; i++) cin >> b[i].x;
while (limit <= N + M) limit <<= 1, l++;
for (int i = l - 1, p = 0; i >= 0; --i) {
int go_dis = 0;
while (go_dis < (1 << (l - i - 1))) {
p = p + 1;
r[p] = r[p - (1 << (l - i - 1))] + (1 << i);
++go_dis;
}
}
fast_fast_tle (a, 1);
fast_fast_tle (b, 1);
for (int i = 0; i < limit; i++) {
c[i] = a[i] * b[i];
}
fast_fast_tle(c, -1);
for (int i = 0; i <= N + M; i++) {
printf("%d ", (int)(c[i].x / limit + 0.5));
}
return 0;
}
附上\(nlogn\)高精乘法的板子
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 4000010
using namespace std;
struct complex {
double x, y;
complex (double xx = 0, double yy = 0) {
x = xx, y = yy;
}
}a[N], b[N], c[N];
complex operator + (complex lhs, complex rhs) {
return complex (lhs.x + rhs.x, lhs.y + rhs.y);
}
complex operator - (complex lhs, complex rhs) {
return complex (lhs.x - rhs.x, lhs.y - rhs.y);
}
complex operator * (complex lhs, complex rhs) {
complex t;
t.x = lhs.x * rhs.x - lhs.y * rhs.y;
t.y = lhs.x * rhs.y + rhs.x * lhs.y;
return t;
}
int read () {
int s = 0, w = 1, ch = getchar ();
while ('9' < ch || ch < '0') {
if (ch == '-') w = -1;
ch = getchar ();
}
while ('0' <= ch && ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * w;
}
int r[N];
int n, m, l, lim = 1;
const double pi = acos (-1);
void fast_fast_tle (complex *A, int type) {
register int i, k, p, len, mid;
register complex Wn, w, x, y;
for (i = 0; i < lim; ++i) if (i < r[i]) swap (A[i], A[r[i]]);
for (mid = 1; mid < lim; mid *= 2) {
Wn = complex (cos (pi / mid), type * sin (pi / mid)); // w (1, mid);
for (len = mid * 2, p = 0; p < lim; p += len) {
w = complex (1, 0);
for (k = 0; k < mid; ++k, w = w * Wn) {// w (k, mid);
x = A[p + k], y = w * A[p + k + mid];
A[p + k] = x + y;
A[p + k + mid] = x - y;
}
}
}
}
int main () {
n = read (), m = read ();
register int i, p, go_dis;
for (i = 0; i <= n; ++i) a[i].x = read ();
for (i = 0; i <= m; ++i) b[i].x = read ();
while (lim <= n + m) lim <<= 1, ++l;
for (i = l - 1, p = 0; i >= 0; --i) {
go_dis = 0;
while (go_dis < (1 << (l - i - 1))) {
p = p + 1;
r[p] = r[p - (1 << (l - i - 1))] + (1 << i);
++go_dis;
}
}
fast_fast_tle (a, +1);
fast_fast_tle (b, +1);
for (i = 0; i < lim; ++i) c[i] = a[i] * b[i];
fast_fast_tle (c, -1);
for (i = 0; i <= n + m; ++i) printf ("%d ", (int) (c[i].x / lim + 0.5));
}
maomao的fft板子的更多相关文章
- FFT板子
woc......FFT这玩意儿真坑...... 一上午除了打了几遍板子什么也没干......真是废了...... 你要加油啊...... #include<cstdio> #includ ...
- 高精乘(fft板子
哇..fft的原理真的是不太好懂,看了好久许多细节还是不太清楚,但感觉本质就是用了单位根的性质. https://www.luogu.org/problem/P1919 #include<cst ...
- FFT && NTT板子
贴板子啦-- FFT板子:luogu P3803 [模板]多项式乘法(FFT) #include<cstdio> #include<iostream> #include< ...
- 卷积FFT、NTT、FWT
先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...
- maomao的每日动向
\(2019.02.04\) \(Nothing\) \(to\) \(do\). \(2019.02.05\) - 早上睡到\(12\)点 - 中午下午:吃饭串门拜年 - 晚上:吹爆<流浪地球 ...
- bzoj 4332 FFT型的快速幂(需要强有力的推导公式能力)
有n个小朋友,m颗糖,你要把所有糖果分给这些小朋友. 规则第 i 个小朋友没有糖果,那么他之后的小朋友都没有糖果..如果一个小朋友分到了 xx 个糖果,那么的他的权值是 f(x) = ox^2 + ...
- 【FFT】hdu1402 A * B Problem Plus
FFT板子. 将大整数看作多项式,它们的乘积即多项式的乘积在x=10处的取值. #include<cstdio> #include<cmath> #include<cst ...
- noip前打板子 qwq
在某咕上打了一晚上的模板 感觉还好... #include<bits/stdc++.h> #define LL long long using namespace std; inline ...
- UVa12298(生成函数的简单应用+FFT)
I have a set of super poker cards, consisting of an infinite number of cards. For each positive compo ...
随机推荐
- indexOf刚开始写成IndexOf出错
{{# if(d.fronturlmin ==null||d.fronturlmin ==""){ }} <img src="@System.Configurati ...
- vpx
VPX 编辑 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! VPX总线是VITA(VME International Trade Association, VME国际贸易协 ...
- mysql 集群方案
试试基于Galera的MySQL高可用集群 mha mgr
- Nginx 安装与详解
nginx简介 nginx是一个开源的,支持高性能,高并发的www服务和代理服务软件.它是一个俄罗斯人lgor sysoev开发的,作者将源代码开源出来供全球使用.nginx比它大哥apache性能改 ...
- re 正则表达式
简介: 1.一堆带有特殊意思的符号组成的式子它的作用 处理(匹配 查找 替换) 字符串 2.在爬虫中大量使用 其实有框架帮你封装了这些复杂的正则 3.在网站和手机APP注册功能中大量使用,例如判断你的 ...
- IDEA 不识别的MAVEN 项目应如何处理
有些人啊,上传到git的项目,根本不是项目而是一个文件夹,文件夹里边还有个文件夹那才是项目,IDEA 不会识别出它是项目来 这个时候,需要选择这个文件夹下的pom.xml 文件 右键 pom.xml然 ...
- Ionic生成的App安装在手机上后无法联网的解决方案
在Ionic中使用inappbrowser.themeablebrowser 组件打开网页,刚开始是好的,后来不知添加什么插件,导致了安装在手机上以后没有网络访问权限. 尝试了很多,最后才发现,此时, ...
- python_getpass 模块的使用
可以实现输入用户密码的时候隐藏输入显示.更加安全. 默认自带Password: 的提示 如果自己指定提示内容就用自己的替换默认 import getpass passwd = getpass.getp ...
- Nagios 监控 Httpd 并发数插件
工作需要监控Httpd并发数,找不到合适的插件,花时间研究了一下Nagios监控内存的脚本,做了一些修改,完成了脚本.监控内存脚本:http://www.cnblogs.com/Mrhuangrui/ ...
- 【HDU1848】Fibonacci again and again(博弈论)
[HDU1848]Fibonacci again and again(博弈论) 题面 Hdu 你有三堆石子,每堆石子的个数是\(n,m,p\),你每次可以从一堆石子中取走斐波那契数列中一个元素等数量的 ...