题目描述

给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少。

输入

The first line contains integer n (1 ≤ n ≤ 105), showing how many numbers the sequence has. The next line contains n integers a1, a2, ..., an (|ai| ≤ 500).

The third line contains integer m (1 ≤ m ≤ 105) — the number of queries. The next m lines contain the queries in the format, given in the statement.

All changing queries fit into limits: 1 ≤ i ≤ n, |val| ≤ 500.

All queries to count the maximum sum of at most k non-intersecting subsegments fit into limits: 1 ≤ l ≤ r ≤ n, 1 ≤ k ≤ 20. It is guaranteed that the number of the queries to count the maximum sum of at most k non-intersecting subsegments doesn't exceed 10000.

输出

For each query to count the maximum sum of at most k non-intersecting subsegments print the reply — the maximum sum. Print the answers to the queries in the order, in which the queries follow in the input.

样例输入

9
9 -8 9 -1 -1 -1 9 -8 9
3
1 1 9 1
1 1 9 2
1 4 6 3

样例输出

17
25
0

提示

In the first query of the first example you can select a single pair (1, 9). So the described sum will be 17.

Look at the second query of the first example. How to choose two subsegments? (1, 3) and (7, 9)? Definitely not, the sum we could get from (1, 3) and (7, 9) is 20, against the optimal configuration (1, 7) and (9, 9) with 25.

The answer to the third query is 0, we prefer select nothing if all of the numbers in the given interval are negative.

首先这个问题可以用费用流来解决:源点向每个点连边,容量为$1$,费用为$0$;第$i$个点向第$i+1$个点连边,容量为$1$,费用为$a_{i}$,每个点向汇点连边,容量为$1$,费用为$0$。可以知道每次增广一定是一段路径(即序列的最大连续子段和),然后将这段路径建反向边。那么我们可以模拟这个过程:每次取序列的最大连续子段和并将这一段的权值取反,假设第一次取了$[1,3]$而第二次取了$[3,5]$,那么相当于第一次取了$[1,2]$第二次取了$[4,5]$,中间的$3$在两次选取中权值抵消掉了。因为每次是贪心的取最大连续的一段,所以不会存在两次取的区间左端点或右端点相同,也就保证了每次取一个区间一定会增加一个子段。因为要取反,我们还要再维护最小连续子段和,然后在区间取反时将最大连续子段和与最小连续子段和调换一下即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int opt;
int l,r;
int x,k;
int ans;
int rev[400010];
struct miku
{
int x,l,r;
miku(){};
miku(int X,int L,int R){x=X,l=L,r=R;}
};
queue<miku>q;
struct Miku
{
miku smx,smn,lmx,lmn,rmx,rmn,sum;
}tr[400010];
bool operator <(miku a,miku b){return a.x<b.x;}
miku operator +(miku a,miku b){return miku(a.x+b.x,a.l,b.r);}
inline Miku pushup(Miku ls,Miku rs)
{
Miku rt;
rt.sum=ls.sum+rs.sum;
rt.smx=max(max(ls.smx,rs.smx),ls.rmx+rs.lmx);
rt.smn=min(min(ls.smn,rs.smn),ls.rmn+rs.lmn);
rt.lmx=max(ls.lmx,ls.sum+rs.lmx);
rt.lmn=min(ls.lmn,ls.sum+rs.lmn);
rt.rmx=max(rs.rmx,ls.rmx+rs.sum);
rt.rmn=min(rs.rmn,ls.rmn+rs.sum);
return rt;
}
inline void flip(int rt)
{
swap(tr[rt].smx,tr[rt].smn);
swap(tr[rt].lmx,tr[rt].lmn);
swap(tr[rt].rmx,tr[rt].rmn);
rev[rt]^=1;
tr[rt].sum.x*=-1;
tr[rt].smx.x*=-1;
tr[rt].smn.x*=-1;
tr[rt].lmx.x*=-1;
tr[rt].lmn.x*=-1;
tr[rt].rmx.x*=-1;
tr[rt].rmn.x*=-1;
}
inline void pushdown(int rt)
{
if(rev[rt])
{
rev[rt]^=1;
flip(rt<<1);
flip(rt<<1|1);
}
}
inline void build(int rt,int l,int r)
{
if(l==r)
{
scanf("%d",&x);
tr[rt].sum=tr[rt].smx=tr[rt].smn=tr[rt].lmx=tr[rt].lmn=tr[rt].rmx=tr[rt].rmn=miku(x,l,r);
return ;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
tr[rt]=pushup(tr[rt<<1],tr[rt<<1|1]);
}
inline void change(int rt,int l,int r,int k,int x)
{
if(l==r)
{
tr[rt].sum=tr[rt].smx=tr[rt].smn=tr[rt].lmx=tr[rt].lmn=tr[rt].rmx=tr[rt].rmn=miku(x,l,r);
return ;
}
pushdown(rt);
int mid=(l+r)>>1;
if(k<=mid)
{
change(rt<<1,l,mid,k,x);
}
else
{
change(rt<<1|1,mid+1,r,k,x);
}
tr[rt]=pushup(tr[rt<<1],tr[rt<<1|1]);
}
inline void reverse(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
flip(rt);
return ;
}
pushdown(rt);
int mid=(l+r)>>1;
if(L<=mid)
{
reverse(rt<<1,l,mid,L,R);
}
if(R>mid)
{
reverse(rt<<1|1,mid+1,r,L,R);
}
tr[rt]=pushup(tr[rt<<1],tr[rt<<1|1]);
}
inline Miku query(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return tr[rt];
}
pushdown(rt);
int mid=(l+r)>>1;
if(R<=mid)
{
return query(rt<<1,l,mid,L,R);
}
else if(L>mid)
{
return query(rt<<1|1,mid+1,r,L,R);
}
else
{
return pushup(query(rt<<1,l,mid,L,R),query(rt<<1|1,mid+1,r,L,R));
}
}
int main()
{
scanf("%d",&n);
build(1,1,n);
scanf("%d",&m);
while(m--)
{
scanf("%d",&opt);
if(!opt)
{
scanf("%d%d",&k,&x);
change(1,1,n,k,x);
}
else
{
scanf("%d%d%d",&l,&r,&k);
ans=0;
while(k--)
{
Miku res=query(1,1,n,l,r);
if(res.smx.x<0)
{
break;
}
ans+=res.smx.x;
q.push(res.smx);
reverse(1,1,n,res.smx.l,res.smx.r);
}
while(!q.empty())
{
miku res=q.front();
q.pop();
reverse(1,1,n,res.l,res.r);
}
printf("%d\n",ans);
}
}
}

BZOJ3638[Codeforces280D]k-Maximum Subsequence Sum&BZOJ3272Zgg吃东西&BZOJ3267KC采花——模拟费用流+线段树的更多相关文章

  1. 【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  2. BZOJ.3638.CF172 k-Maximum Subsequence Sum(模拟费用流 线段树)

    题目链接 各种zz错误..简直了 /* 19604kb 36292ms 题意:选$k$段不相交的区间,使其权值和最大. 朴素线段树:线段树上每个点维护O(k)个信息,区间合并时O(k^2),总O(mk ...

  3. CF280D-k-Maximum Subsequence Sum【模拟费用流,线段树】

    正题 题目链接:https://www.luogu.com.cn/problem/CF280D 题目大意 一个长度为\(n\)的序列,\(m\)次操作 修改一个数 询问一个区间中选出\(k\)段不交子 ...

  4. 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)

    01-复杂度2 Maximum Subsequence Sum   (25分) Given a sequence of K integers { N​1​​,N​2​​, ..., N​K​​ }. ...

  5. PAT1007:Maximum Subsequence Sum

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  6. PTA (Advanced Level) 1007 Maximum Subsequence Sum

    Maximum Subsequence Sum Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous su ...

  7. 【DP-最大子串和】PAT1007. Maximum Subsequence Sum

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  8. PAT Maximum Subsequence Sum[最大子序列和,简单dp]

    1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...

  9. PAT甲 1007. Maximum Subsequence Sum (25) 2016-09-09 22:56 41人阅读 评论(0) 收藏

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

随机推荐

  1. 【开源】Skatch 正式发布 - 极速渲染抽象派草图

    极速渲染抽象派草图 DEMO Simple Letter 简介 Skatch 这个词由 sketch wechart abstract cax 混合而成的一个新词,代表了cax wechart 抽象艺 ...

  2. 算法题:合并N个长度为L的有序数组为一个有序数组(JAVA实现)

    昨天面试被问到这道算法题,一时没有回答上来,今天思考了一下,参阅了网上的教程,做了一个JAVA版本的实现. 方案一: 新建一个N*L的数组,将原始数组拼接存放在这个大数组中,再调用Arrays.sor ...

  3. 在Linux的Windows子系统上(WSL)使用Docker(Ubuntu)

    背景 平时开发大部人都是在提供了高效GUI的window下工作,但是真正部署环境普遍都是在Linux中,所以为了让开发环境和部署环境统一,我们需要在windows模拟LInux环境,以前我们可能通过虚 ...

  4. NODE 模块 FS-EXTRA

    fs-extra模块是系统fs模块的扩展,提供了更多便利的 API,并继承了fs模块的 API. 1.复制文件 copy(src, dest, [options], callback) 示例: var ...

  5. poj2104 主席树裸题

    空间大小:n*lgn 复杂度:建树n*lgn  查询lgn #include <cstdio> #include <iostream> #include <algorit ...

  6. stark组件之delete按钮、filter过滤

    1.构建批量删除按钮 2.filter过滤 3.总结+coding代码 1.构建批量删除按钮 1.admin中每个页面默认都有 2.stark之构建批量删除 3.coding {% extends ' ...

  7. Python3练习题求1000以内所有3和5的倍数的总和

    sum = 0 for i in range(1,1000):     if i%3 == 0 or i%5 == 0:         sum += i print(sum)

  8. 6-1 Quantifiers

    1 Quantifiers are used to describe the number or amount of something. Certain quantifiers are used w ...

  9. [转帖]SAP一句话入门:Material Management

    SAP一句话入门:Material Management http://blog.vsharing.com/MilesForce/A616683.html 让我们来关注供应链上的另一个模块Materi ...

  10. C++加载动态库的形式来实现封装

    目录结构 └── test ├── CMakeLists.txt ├── base.h //设置接口 ├── drive.cpp //具体实现 └── main.cpp //test CMakeLis ...