题目描述

给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少。

输入

The first line contains integer n (1 ≤ n ≤ 105), showing how many numbers the sequence has. The next line contains n integers a1, a2, ..., an (|ai| ≤ 500).

The third line contains integer m (1 ≤ m ≤ 105) — the number of queries. The next m lines contain the queries in the format, given in the statement.

All changing queries fit into limits: 1 ≤ i ≤ n, |val| ≤ 500.

All queries to count the maximum sum of at most k non-intersecting subsegments fit into limits: 1 ≤ l ≤ r ≤ n, 1 ≤ k ≤ 20. It is guaranteed that the number of the queries to count the maximum sum of at most k non-intersecting subsegments doesn't exceed 10000.

输出

For each query to count the maximum sum of at most k non-intersecting subsegments print the reply — the maximum sum. Print the answers to the queries in the order, in which the queries follow in the input.

样例输入

9
9 -8 9 -1 -1 -1 9 -8 9
3
1 1 9 1
1 1 9 2
1 4 6 3

样例输出

17
25
0

提示

In the first query of the first example you can select a single pair (1, 9). So the described sum will be 17.

Look at the second query of the first example. How to choose two subsegments? (1, 3) and (7, 9)? Definitely not, the sum we could get from (1, 3) and (7, 9) is 20, against the optimal configuration (1, 7) and (9, 9) with 25.

The answer to the third query is 0, we prefer select nothing if all of the numbers in the given interval are negative.

首先这个问题可以用费用流来解决:源点向每个点连边,容量为$1$,费用为$0$;第$i$个点向第$i+1$个点连边,容量为$1$,费用为$a_{i}$,每个点向汇点连边,容量为$1$,费用为$0$。可以知道每次增广一定是一段路径(即序列的最大连续子段和),然后将这段路径建反向边。那么我们可以模拟这个过程:每次取序列的最大连续子段和并将这一段的权值取反,假设第一次取了$[1,3]$而第二次取了$[3,5]$,那么相当于第一次取了$[1,2]$第二次取了$[4,5]$,中间的$3$在两次选取中权值抵消掉了。因为每次是贪心的取最大连续的一段,所以不会存在两次取的区间左端点或右端点相同,也就保证了每次取一个区间一定会增加一个子段。因为要取反,我们还要再维护最小连续子段和,然后在区间取反时将最大连续子段和与最小连续子段和调换一下即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int opt;
int l,r;
int x,k;
int ans;
int rev[400010];
struct miku
{
int x,l,r;
miku(){};
miku(int X,int L,int R){x=X,l=L,r=R;}
};
queue<miku>q;
struct Miku
{
miku smx,smn,lmx,lmn,rmx,rmn,sum;
}tr[400010];
bool operator <(miku a,miku b){return a.x<b.x;}
miku operator +(miku a,miku b){return miku(a.x+b.x,a.l,b.r);}
inline Miku pushup(Miku ls,Miku rs)
{
Miku rt;
rt.sum=ls.sum+rs.sum;
rt.smx=max(max(ls.smx,rs.smx),ls.rmx+rs.lmx);
rt.smn=min(min(ls.smn,rs.smn),ls.rmn+rs.lmn);
rt.lmx=max(ls.lmx,ls.sum+rs.lmx);
rt.lmn=min(ls.lmn,ls.sum+rs.lmn);
rt.rmx=max(rs.rmx,ls.rmx+rs.sum);
rt.rmn=min(rs.rmn,ls.rmn+rs.sum);
return rt;
}
inline void flip(int rt)
{
swap(tr[rt].smx,tr[rt].smn);
swap(tr[rt].lmx,tr[rt].lmn);
swap(tr[rt].rmx,tr[rt].rmn);
rev[rt]^=1;
tr[rt].sum.x*=-1;
tr[rt].smx.x*=-1;
tr[rt].smn.x*=-1;
tr[rt].lmx.x*=-1;
tr[rt].lmn.x*=-1;
tr[rt].rmx.x*=-1;
tr[rt].rmn.x*=-1;
}
inline void pushdown(int rt)
{
if(rev[rt])
{
rev[rt]^=1;
flip(rt<<1);
flip(rt<<1|1);
}
}
inline void build(int rt,int l,int r)
{
if(l==r)
{
scanf("%d",&x);
tr[rt].sum=tr[rt].smx=tr[rt].smn=tr[rt].lmx=tr[rt].lmn=tr[rt].rmx=tr[rt].rmn=miku(x,l,r);
return ;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
tr[rt]=pushup(tr[rt<<1],tr[rt<<1|1]);
}
inline void change(int rt,int l,int r,int k,int x)
{
if(l==r)
{
tr[rt].sum=tr[rt].smx=tr[rt].smn=tr[rt].lmx=tr[rt].lmn=tr[rt].rmx=tr[rt].rmn=miku(x,l,r);
return ;
}
pushdown(rt);
int mid=(l+r)>>1;
if(k<=mid)
{
change(rt<<1,l,mid,k,x);
}
else
{
change(rt<<1|1,mid+1,r,k,x);
}
tr[rt]=pushup(tr[rt<<1],tr[rt<<1|1]);
}
inline void reverse(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
flip(rt);
return ;
}
pushdown(rt);
int mid=(l+r)>>1;
if(L<=mid)
{
reverse(rt<<1,l,mid,L,R);
}
if(R>mid)
{
reverse(rt<<1|1,mid+1,r,L,R);
}
tr[rt]=pushup(tr[rt<<1],tr[rt<<1|1]);
}
inline Miku query(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return tr[rt];
}
pushdown(rt);
int mid=(l+r)>>1;
if(R<=mid)
{
return query(rt<<1,l,mid,L,R);
}
else if(L>mid)
{
return query(rt<<1|1,mid+1,r,L,R);
}
else
{
return pushup(query(rt<<1,l,mid,L,R),query(rt<<1|1,mid+1,r,L,R));
}
}
int main()
{
scanf("%d",&n);
build(1,1,n);
scanf("%d",&m);
while(m--)
{
scanf("%d",&opt);
if(!opt)
{
scanf("%d%d",&k,&x);
change(1,1,n,k,x);
}
else
{
scanf("%d%d%d",&l,&r,&k);
ans=0;
while(k--)
{
Miku res=query(1,1,n,l,r);
if(res.smx.x<0)
{
break;
}
ans+=res.smx.x;
q.push(res.smx);
reverse(1,1,n,res.smx.l,res.smx.r);
}
while(!q.empty())
{
miku res=q.front();
q.pop();
reverse(1,1,n,res.l,res.r);
}
printf("%d\n",ans);
}
}
}

BZOJ3638[Codeforces280D]k-Maximum Subsequence Sum&BZOJ3272Zgg吃东西&BZOJ3267KC采花——模拟费用流+线段树的更多相关文章

  1. 【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  2. BZOJ.3638.CF172 k-Maximum Subsequence Sum(模拟费用流 线段树)

    题目链接 各种zz错误..简直了 /* 19604kb 36292ms 题意:选$k$段不相交的区间,使其权值和最大. 朴素线段树:线段树上每个点维护O(k)个信息,区间合并时O(k^2),总O(mk ...

  3. CF280D-k-Maximum Subsequence Sum【模拟费用流,线段树】

    正题 题目链接:https://www.luogu.com.cn/problem/CF280D 题目大意 一个长度为\(n\)的序列,\(m\)次操作 修改一个数 询问一个区间中选出\(k\)段不交子 ...

  4. 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)

    01-复杂度2 Maximum Subsequence Sum   (25分) Given a sequence of K integers { N​1​​,N​2​​, ..., N​K​​ }. ...

  5. PAT1007:Maximum Subsequence Sum

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  6. PTA (Advanced Level) 1007 Maximum Subsequence Sum

    Maximum Subsequence Sum Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous su ...

  7. 【DP-最大子串和】PAT1007. Maximum Subsequence Sum

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  8. PAT Maximum Subsequence Sum[最大子序列和,简单dp]

    1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...

  9. PAT甲 1007. Maximum Subsequence Sum (25) 2016-09-09 22:56 41人阅读 评论(0) 收藏

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

随机推荐

  1. 初识Python-1

    1,计算机基础. 2,python历史. 宏观上:python2 与 python3 区别: python2 源码不标准,混乱,重复代码太多, python3 统一 标准,去除重复代码. 3,pyth ...

  2. java 抽象

    MotoVehicle抽象类 package text1; /* * 抽象 */ public abstract class MotoVehicle { // 共同的属性 private String ...

  3. HNOI2013 BZOJ3144 切糕

    在n×m的表格上,在(x,y)填v的代价是w(x,y,v),且相邻格子填的数相差≤d.求填满表格的最小代价.n,m,maxv≤40. 每个点上选择一个数填,因此将上面的数串起来.考虑限制条件,矛盾条件 ...

  4. case when then的用法-leetcode交换工资

    case具有两种格式:简单case函数和case搜索函数. --简单case函数 case sex when ' then '男' when ' then '女’ else '其他' end --ca ...

  5. C#使用OneNote的图片文字识别功能(OCR)

    http://www.cnblogs.com/Charltsing/p/OneNoteOCR.html 有需要技术咨询的,联系QQ564955427 前段时间有人问我能不能通过OneNote扫描图片, ...

  6. Day7 Ubantu学习(一)

    Linux是多用户操作系统 Ubantu学习参考网址:https://www.cnblogs.com/resn/p/5800922.html 1.虚拟机网络类型的理解 bridged(桥接模式) : ...

  7. MySQL数据类型优化—整数类型优化选择

    原文:http://bbs.landingbj.com/t-0-240002-1.html 在设计数据库的时候,整数类型的使用时不可避免的如ID,类型等. 在选择整数的同时主要是考虑是数据范围,如是否 ...

  8. Go To Oracle

    1.下载mingw   (gcc 编译)---win32 2.下载OCI最新版,存放于C:\instantclient_12_1   ---win32 3.下载OCI SDK最新版,存放于C:\ins ...

  9. Farm Irrigation

    题目:Farm Irrigation 题目链接:http://210.34.193.66:8080/vj/Problem.jsp?pid=1494 题目思路:并查集 #include<stdio ...

  10. mybatis一级缓存详解

    mybatis缓存分为一级缓存,二级缓存和自定义缓存.本文重点讲解一级缓存 一:前言 在介绍缓存之前,先了解下mybatis的几个核心概念: * SqlSession:代表和数据库的一次会话,向用户提 ...