题目链接多校8-1009 HDU - 6158 The Designer

题意

T(<=1200)组,如图在半径R1、R2相内切的圆的差集位置依次绘制1,2,3,到n号圆,求面积之和(n<=1e7)。

题解

圆的反演:

(圆的反演就是半径为R,圆心O的圆为反演中心,点P的反演点就是在射线OP上满足\(|OP’|*|OP|=R^2\)的点P‘)

设切点为O,以O为圆心半径R的圆为反演点。将圆R1和R2反演得到两条直线,和两条直线相切的圆反演回去的圆就是1~n号圆的圆心。

那么它们的直径就是这些小圆的圆心和O的连线与小圆的交点反演回去的点的距离差。



再扔一次画图工具Desmos

比赛的时候想到这里就以为复杂度太高,不知道怎么预处理。其实到后面圆面积会收敛得很快。精度只要1e-5,就可以及时break掉。

代码

#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1);
const double R = 1;
int t,r1,r2,n;
double r0,d,a,b,r,s;
double ans;
int main() {
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&r1,&r2,&n);
if(r2<r1)swap(r1,r2);
d=R*(r1+r2)/r2/r1/4;
r0=d-R/2/r1;
r=r2-r1;
ans=pi*r*r;
for(int i=1;i<=n/2;++i){
a=sqrt(d*d+i*r0*i*r0*4)-r0,b=a+r0*2;
r=(R/a-R/b)/2;
s=pi*r*r;
ans+=s;
if(i*2<n)ans+=s;
if(s*(n-i*2)<1e-6){
break;
}
}
printf("%.5f\n",ans);
}
return 0;
}

「HDU6158」 The Designer(圆的反演)的更多相关文章

  1. LOJ2476. 「2018 集训队互测 Day 3」蒜头的奖杯 & LOJ2565. 「SDOI2018」旧试题(莫比乌斯反演)

    题目链接 LOJ2476:https://loj.ac/problem/2476 LOJ2565:https://loj.ac/problem/2565 题解 参考照搬了 wxh 的博客. 为了方便, ...

  2. hdu6158(圆的反演)

    hdu6158 题意 初始有两个圆,按照标号去放圆,问放完 \(n\) 个圆后的总面积. 分析 圆的反演的应用. 参考blog 设反演圆心为 \(O\) 和反演半径 \(R\) 圆的反演的定义: 已知 ...

  3. The Designer (笛卡尔定理+韦达定理 || 圆的反演)

    Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the ...

  4. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  5. 「LOJ6482」LJJ爱数数

    「LOJ6482」LJJ爱数数 解题思路 : 打表发现两个数 \(a, b\) 合法的充要条件是(我不管,我就是打表过的): \[ a + b = \text{gcd}(a, b)^2 \] 设 \( ...

  6. 「ZJOI2009」多米诺骨牌

    「ZJOI2009」多米诺骨牌 题目描述 有一个n × m 的矩形表格,其中有一些位置有障碍.现在要在这个表格内 放一些1 × 2 或者2 × 1 的多米诺骨牌,使得任何两个多米诺骨牌没有重叠部分,任 ...

  7. [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC

    [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...

  8. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  9. 零元学Expression Blend 4 - Chapter 16 用实例了解互动控制项「Button」II

    原文:零元学Expression Blend 4 - Chapter 16 用实例了解互动控制项「Button」II 本章将教大家如何制作自己的Button,并以玻璃质感Button为实作案例. ? ...

随机推荐

  1. POJ - 3468 线段树区间修改,区间求和

    由于是区间求和,因此我们在更新某个节点的时候,需要往上更新节点信息,也就有了tree[root].val=tree[L(root)].val+tree[R(root)].val; 但是我们为了把懒标记 ...

  2. 微信小程序学习笔记以及VUE比较

    之前只是注册了一下微信小程序AppID,随便玩了玩HelloWorld!(项目起手式),但是最近看微信小程序/小游戏,崛起之势不可阻挡.小程序我来了!(果然,一入前端深似海啊啊啊啊啊~) 编辑器: S ...

  3. python札记

    进制转换 num = "0011"v = int(num, base=16)print(v)2->16

  4. awk+sed编程

  5. spark、standalone集群 (2)集群zookeeper 热备

     测试 cmd     spark-examples-1.6.0-hadoop2.6.0.jar   spark 2.0以后  就没有这个 jar.需要下载 ./bin/spark-submit -- ...

  6. linux下编译tex,bib成pdf文件

    参考linux下编译bib.tex生成pdf文件 为了编译出出正确的pdf文件,需要执行4条命令完成整个编译过程. 编译命令及输出 $ pdflatex bb.tex #目录下会生成bb.aux.bb ...

  7. mybatis事务管理机制详解

    1.mybatis事务的配置和使用 mybatis事务有两种使用方式: (a):使用JDBC的事务管理机制:即使用java.Sql.Connection对象完成对事务的提交,回滚和关闭操作. (b): ...

  8. js对input框的可编辑属性设置

    添加disabled属性 $('#areaSelect').attr("disabled",true); $('#areaSelect').attr("disabled& ...

  9. hive数学函数

    round 四舍五入 ceil向上 取整 floor向下取整 hive >  select floor(45.8); ok 45

  10. 使用php导出excel并使用excel的求和统计函数对excel进行汇总

    1. 使用excel的统计函数对excel进行多条件汇总求和: =SUMIFS($D$:$D$, $A$:$A$, :$B$, :$C$, "三级片") 例如: =SUMIFS(求 ...