Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 15962   Accepted: 9237

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long dp[13][1<<11];
int n,m;
 
void dfs(int i,int j,int state,int next)
{
    if(j==m)
    {
        dp[i+1][next] += dp[i][state];
        return;
    }
    if(((1<<j)&state) > 0)
        dfs(i,j+1,state,next);
    if(((1<<j)&state) == 0)
        dfs(i,j+1,state,next|(1<<j));
    if(j<=m-2 && ((1<<j)&state) == 0 && ((1<<(j+1))&state) == 0)
        dfs(i,j+2,state,next);
    return;
}
 
int main()
{
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        if(n%2==1&&m%2==1){
            printf("0\n");
            continue;
        }
        if(n<m) swap(n,m);
        memset(dp,0,sizeof(dp));
        dp[1][0] = 1;
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<(1<<m);j++)
            {
                if(dp[i][j])
                    dfs(i,0,j,0);
            }
        }
        printf("%lld\n",dp[n+1][0]);
    }
}

POJ2411 铺地砖 Mondriaan's Dream的更多相关文章

  1. 【POJ2411】Mondriaan's Dream(轮廓线DP)

    [POJ2411]Mondriaan's Dream(轮廓线DP) 题面 Vjudge 题解 这题我会大力状压!!! 时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前 ...

  2. 【poj2411】 Mondriaan's Dream

    http://poj.org/problem?id=2411 (题目链接) 题意 一个$n*m$的网格,用$1*2$的方块填满有多少种方案. Solution 轮廓线dp板子.按格dp,对上方和左方的 ...

  3. 【poj2411】Mondriaan's Dream 状态压缩dp

    AC传送门:http://vjudge.net/problem/POJ-2411 [题目大意] 有一个W行H列的广场,需要用1*2小砖铺盖,小砖之间互相不能重叠,问有多少种不同的铺法? [题解] 对于 ...

  4. 【POJ2411】Mondriaan's Dream

    题目大意:给定一个 N*M 的棋盘,用 1*2 的木条填满有多少种不同的方式. 题解:在这里采用以行为阶段进行状压 dp.到第 i 行时,1*1 的木块分成两类,第一类是这个木块是竖着放置木条的上半部 ...

  5. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

  6. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  7. [Poj2411]Mondriaan's Dream(状压dp)(插头dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18096   Accepted: 103 ...

  8. POJ1185 炮兵阵地 和 POJ2411 Mondriaan's Dream

    炮兵阵地 Language:Default 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34008 Accepted ...

  9. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

随机推荐

  1. telnet总结

    telnet是经常使用的客户端链接工具,总结一下常用的telnet的使用方法 1) 连接 telnet //链接swoole 2)退出当前连接 ctrl + ] 回车 3)查看常用的一些命令 ? 回车 ...

  2. 【Python3练习题 025】 一个数,判断它是不是回文数。即12321是回文数,个位与万位相同,十位与千位相同

    [Python练习题 025] 一个5位数,判断它是不是回文数.即12321是回文数,个位与万位相同,十位与千位相同 x = input('请输入任意位数的数字:') if x == x[::-1]: ...

  3. python3 九九乘法表打印花式操作(然并卵)

    # 九九乘法表# 方法一# for i in range(1, 10):# for j in range(1, i+1):# print('{}x{}={}\t'.format(i, j, i*j), ...

  4. composer 自动加载类 通过psr

    项目地址  git@github.com:brady-wang/composer.git "autoload":{ "classmap":[ "Lib ...

  5. Windows 下 Mysql8.0.12 的安装方法

    1. 之前在windows 上面安装了 mysql 5.6 还有 mysql 5.7 遇到了几个坑 , 最近想直接安装最新版的 mysql 8.0.12(较新) 发现还是有坑 跟之前的版本不一样 这里 ...

  6. [转帖]Linux 下如何知道是否有人在使坏?

    Linux 下如何知道是否有人在使坏? 学到了两个最简单的命令 usermod -L username 锁定账户 passwd -s username 查看用户状态. 自己linux 知道的还是少 需 ...

  7. K3BOM跳层

    A自制件,B自制件,C外购件 ,结构为A-B-C 如果需要跳层,则设置A-B跳层,B-C跳层,则生成A计划订单,C计划订单, 假设单独A-B跳层,则MRP运算出的结果也是A计划订单,B计划订单,C计划 ...

  8. C# Note28: Dispatcher类

    在项目中也是经常用到: 刚见到它时,你会想:为什么不直接使用System.Windows命名空间下的MessageBox类,何必要这么麻烦?(认真分析看它做了什么,具体原因下面解释) 主要介绍的方法: ...

  9. windows环境下的git安装及使用

    昨天晚上,我用了一个半小时整github,为了便于他人能快速的安装使用,也为了回顾一下自己痛苦的过程,特意写下这篇博客.好的,让我们开始吧.... 我的环境:win10,msysgit1.9.4.0 ...

  10. EXAMPLE FOR PEEWEE 多姿势使用 PEEWEE

    使用 PEEWEE 断断续续的差不多已经三个年头了,但是没有像这次使用这么多的特性和功能,所以这次一并记录一下,需要注意的地方和一些使用细节,之后使用起来可能会更方便. 因为是使用的 SQLAched ...