Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 15962   Accepted: 9237

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long dp[13][1<<11];
int n,m;
 
void dfs(int i,int j,int state,int next)
{
    if(j==m)
    {
        dp[i+1][next] += dp[i][state];
        return;
    }
    if(((1<<j)&state) > 0)
        dfs(i,j+1,state,next);
    if(((1<<j)&state) == 0)
        dfs(i,j+1,state,next|(1<<j));
    if(j<=m-2 && ((1<<j)&state) == 0 && ((1<<(j+1))&state) == 0)
        dfs(i,j+2,state,next);
    return;
}
 
int main()
{
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        if(n%2==1&&m%2==1){
            printf("0\n");
            continue;
        }
        if(n<m) swap(n,m);
        memset(dp,0,sizeof(dp));
        dp[1][0] = 1;
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<(1<<m);j++)
            {
                if(dp[i][j])
                    dfs(i,0,j,0);
            }
        }
        printf("%lld\n",dp[n+1][0]);
    }
}

POJ2411 铺地砖 Mondriaan's Dream的更多相关文章

  1. 【POJ2411】Mondriaan's Dream(轮廓线DP)

    [POJ2411]Mondriaan's Dream(轮廓线DP) 题面 Vjudge 题解 这题我会大力状压!!! 时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前 ...

  2. 【poj2411】 Mondriaan's Dream

    http://poj.org/problem?id=2411 (题目链接) 题意 一个$n*m$的网格,用$1*2$的方块填满有多少种方案. Solution 轮廓线dp板子.按格dp,对上方和左方的 ...

  3. 【poj2411】Mondriaan's Dream 状态压缩dp

    AC传送门:http://vjudge.net/problem/POJ-2411 [题目大意] 有一个W行H列的广场,需要用1*2小砖铺盖,小砖之间互相不能重叠,问有多少种不同的铺法? [题解] 对于 ...

  4. 【POJ2411】Mondriaan's Dream

    题目大意:给定一个 N*M 的棋盘,用 1*2 的木条填满有多少种不同的方式. 题解:在这里采用以行为阶段进行状压 dp.到第 i 行时,1*1 的木块分成两类,第一类是这个木块是竖着放置木条的上半部 ...

  5. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

  6. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  7. [Poj2411]Mondriaan's Dream(状压dp)(插头dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18096   Accepted: 103 ...

  8. POJ1185 炮兵阵地 和 POJ2411 Mondriaan's Dream

    炮兵阵地 Language:Default 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34008 Accepted ...

  9. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

随机推荐

  1. 项目集成自动分词系统ansj,实现自定义词库

    一,分词系统地址:https://github.com/NLPchina/ansj_seg 二,为什么选择ansj? 1.项目需求: 我们平台要做手机售后的舆情分析,即对购买手机的用户的评论进行分析. ...

  2. 【Python3练习题 020】 求1+2!+3!+...+20!的和

    方法一 import functools   sum = 0 for i in range(1,21):     sum = sum + functools.reduce(lambda x,y: x* ...

  3. 一次linux问题分析原因的简要记录

    1. 这边功能测试 一个linux服务器 4c 16g的内存 发现总是出现异常. dotnet run 起来的一个 程序 总是会被killed 现象为: 2. 一开始怀疑是 打开的文件描述符过多 引起 ...

  4. Oracle转换函数

    ()--转换函数 --数字转换字符串 )||'分' from dual; ||'' from dual; ()--日期转字符串 select to_char(sysdate,'yyyy-mm-dd') ...

  5. Day 5-8 自定义元类控制类的实例化行为

    __call__方法: 对象后面加括号,触发执行. 注:构造方法的执行是由创建对象触发的,即:对象 = 类名() :而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类( ...

  6. String类内存空间详解

    java.lang.String类内存问题详解 字符串理解的难点在于其在堆内存空间上的特殊性,字符串String对象在堆内存上有两种空间: 字符串池(String pool):特殊的堆内存,专门存放S ...

  7. mycat - 水平分表

    相对于垂直拆分的区别是:垂直拆分是把不同的表拆到不同的数据库中,而水平拆分是把同一个表拆到不同的数据库中.水平拆分不是将表的数据做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中包含一部分 ...

  8. 在 Ubuntu14.04 上搭建 Spark 2.3.1(latest version)

    搭建最新的 Spark 2.3.1 . 首先需要下载最新版 jdk .目前 2.3.1 需要 8.0 及其以上 jdk 才可以允许. 所以如果你没有 8.0  jdk 安装好了之后会报错.不要尝试安装 ...

  9. ssh 登陆服务器原理

    这里分两种情况,这两种情况都涉及到公钥加密的概念. 由于公钥加密概念作为基础就不在本文进行讨论了. 使用ssh对远程服务器进行密码登录发生了什么: 客户端通过ssh连接服务器 1. 首先服务器把自己的 ...

  10. NPOI 上传Excel功能

    1.首先写一个Excel表格,第一行数据库类型(varchar.date.decimal).第二行数据库类型长度(100.12,4.时间日期为空)2.html 加按钮 { type: "bu ...