Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 15962   Accepted: 9237

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long dp[13][1<<11];
int n,m;
 
void dfs(int i,int j,int state,int next)
{
    if(j==m)
    {
        dp[i+1][next] += dp[i][state];
        return;
    }
    if(((1<<j)&state) > 0)
        dfs(i,j+1,state,next);
    if(((1<<j)&state) == 0)
        dfs(i,j+1,state,next|(1<<j));
    if(j<=m-2 && ((1<<j)&state) == 0 && ((1<<(j+1))&state) == 0)
        dfs(i,j+2,state,next);
    return;
}
 
int main()
{
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        if(n%2==1&&m%2==1){
            printf("0\n");
            continue;
        }
        if(n<m) swap(n,m);
        memset(dp,0,sizeof(dp));
        dp[1][0] = 1;
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<(1<<m);j++)
            {
                if(dp[i][j])
                    dfs(i,0,j,0);
            }
        }
        printf("%lld\n",dp[n+1][0]);
    }
}

POJ2411 铺地砖 Mondriaan's Dream的更多相关文章

  1. 【POJ2411】Mondriaan's Dream(轮廓线DP)

    [POJ2411]Mondriaan's Dream(轮廓线DP) 题面 Vjudge 题解 这题我会大力状压!!! 时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前 ...

  2. 【poj2411】 Mondriaan's Dream

    http://poj.org/problem?id=2411 (题目链接) 题意 一个$n*m$的网格,用$1*2$的方块填满有多少种方案. Solution 轮廓线dp板子.按格dp,对上方和左方的 ...

  3. 【poj2411】Mondriaan's Dream 状态压缩dp

    AC传送门:http://vjudge.net/problem/POJ-2411 [题目大意] 有一个W行H列的广场,需要用1*2小砖铺盖,小砖之间互相不能重叠,问有多少种不同的铺法? [题解] 对于 ...

  4. 【POJ2411】Mondriaan's Dream

    题目大意:给定一个 N*M 的棋盘,用 1*2 的木条填满有多少种不同的方式. 题解:在这里采用以行为阶段进行状压 dp.到第 i 行时,1*1 的木块分成两类,第一类是这个木块是竖着放置木条的上半部 ...

  5. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

  6. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  7. [Poj2411]Mondriaan's Dream(状压dp)(插头dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18096   Accepted: 103 ...

  8. POJ1185 炮兵阵地 和 POJ2411 Mondriaan's Dream

    炮兵阵地 Language:Default 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34008 Accepted ...

  9. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

随机推荐

  1. 【学习总结】GirlsInAI ML-diary day-4:变量/Variable

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day4 变量/Variable 变量是计算机编程中一个很基础的概念,在计算机程序中,variables are reser ...

  2. Bootstrap知识记录:表格和按钮

    基本格式.table3.带边框的表格//给表格增加边框<table class="table table-bordered">4.悬停鼠标//让<tbody> ...

  3. spring boot session error

    Error starting ApplicationContext. To display the conditions report re-run your application with 'de ...

  4. Navicat软件安装

    Navicat_10.1.7永久注册码 NAVH-WK6A-DMVK-DKW3

  5. vscode運行vue和html

    html 选中html文件,右键选择view in broswer.

  6. Redis 禁用FLUSHALL FLUSHDB KEYS 命令

      (error) ERR unknown command 'keys'问题解决(error) ERR unknown command 'FLUSHDB' 问题解决 背景 FLUSHALL FLUSH ...

  7. Java调用.NET 的Web Service服务故障排除

    参考路径:http://blog.sina.com.cn/s/blog_4c925dca01014y3r.html

  8. js中对URL进行转码与解码

    1. escape 和 unescape escape()不能直接用于URL编码,它的真正作用是返回一个字符的Unicode编码值. 采用unicode字符集对指定的字符串除0-255以外进行编码.所 ...

  9. Android SDK Mirror

    Android SDK Manager - Tools - Option - Proxy Settings - HTTP Proxy Server mirrors.zzu.edu.cn Force H ...

  10. do not track

    privacy.trackingprotection.enabled