51Nod1773 A国的贸易 多项式 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html
题目传送门 - 51Nod1773
题意
给定一个长度为 $2^n$ 的序列,第 $i$ 项为 $f_{i-1}$ 。
现在让你做 $T$ 次这样的运算:($i\in[0,2^n)$)
$$f^{\prime}_i=f_i+\sum_{j=0}^{n-1} f_{i\ {\rm XOR} \ 2^j}$$
输出最终的 $f$ 序列。
题解
构造转移多项式 $g$ 。使得 $g_0=1,g_{2^i}=1$ 。
答案为 $f * g^T$ ,其中 $*$ 为异或卷积 。
代码
#include <bits/stdc++.h>
using namespace std;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
void write(int x){
if (x>9)
write(x/10);
putchar(x%10+'0');
}
const int N=1<<20,mod=1e9+7,inv2=5e8+4;
int n,k,d,a[N],b[N];
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
void FWT(int a[],int n,int flag){
for (int d=1;d<n;d<<=1)
for (int i=0;i<n;i+=(d<<1))
for (int j=0;j<d;j++){
int &L=a[i+j],&R=a[i+j+d];
int x=a[i+j],y=a[i+j+d];
L=x+y;
if (L>=mod)
L-=mod;
R=x-y;
if (R<0)
R+=mod;
if (flag==-1){
L=1LL*L*inv2%mod;
R=1LL*R*inv2%mod;
}
}
}
int main(){
d=read(),k=read(),n=1<<d;
for (int i=0;i<n;i++)
a[i]=read();
memset(b,0,sizeof b);
b[0]=1;
for (int i=0;i<d;i++)
b[1<<i]=1;
FWT(a,n,1),FWT(b,n,1);
for (int i=0;i<n;i++)
a[i]=1LL*a[i]*Pow(b[i],k)%mod;
FWT(a,n,-1);
for (int i=0;i<n;i++)
write(a[i]),putchar(' ');
return 0;
}
51Nod1773 A国的贸易 多项式 FWT的更多相关文章
- 51nod1773 A国的贸易
基准时间限制:2 秒 空间限制:524288 KB 分值: 40 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们 ...
- 【51Nod1773】A国的贸易 解题报告
[51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...
- [51Nod 1773] A国的贸易
[51Nod 1773] A国的贸易 题目描述 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们有着神奇的贸易规则. ...
- 【51Nod1773】A国的贸易 FWT+快速幂
题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...
- 【51nod】1773 A国的贸易
题解 FWT板子题 可以发现 \(dp[i][u] = \sum_{i = 0}^{N - 1} dp[i - 1][u xor (2^i)] + dp[i - 1][u]\) 然后如果把异或提出来可 ...
- 51NOD 1773:A国的贸易——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1773 参考1:FWT讲解 https://www.cnblogs.com ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
随机推荐
- Laravel 自定义分页、可以调整、显示数目
{{-- 增加输入框,跳转任意页码和显示任意条数 --}} <ul class="pagination pagination-sm"> <li> <s ...
- appium+java(七)图片的放到及缩小操作
多点触控(MultiTouch) MultiTouch对象是触摸操作的集合. 多点触控手势只有两个方法,add和perform. add 用于将不同的触摸操作添加到当前的多点触控中. 当 perfor ...
- Python-数据库 基本SQL语句
1. 数据库是什么 2. MySQL安装 3. 用户授权 4. 数据库操作 - 数据表 - 数据类型 - 是否可以为空 - 自增 - 主键 - 外键 - 唯一索引 数据行 增 删 改 查 排序: or ...
- 1)requests模块
一:requests 介绍 requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装, 从而使得Pyt ...
- python与用户交互、数据类型
一.与用户交互 1.什么是用户交互: 程序等待用户输入一些数据,程序执行完毕反馈信息. 2.如何使用 在python3中使用input,input会将用户输入的如何内容存为字符串:在python中分为 ...
- IntelliJ IDEA插件 - ApiDebugger
IntelliJ IDEA插件 - ApiDebuggerApiDebugger,是一个开源的接口调试IntelliJ IDEA插件,具有与IDEA一致的界面,无需切换程序即可完成网络API请求,让你 ...
- Cropper.js使用笔记
官网:https://fengyuanchen.github.io/cropperjs/ github:https://github.com/fengyuanchen/cropperjs 由于文档不好 ...
- Modbus库开发笔记之二:Modbus消息帧的生成
前面我们已经对Modbus的基本事务作了说明,也据此设计了我们将要实现的主从站的操作流程.这其中与Modbus直接相关的就是Modbus消息帧的生成.Modbus消息帧也是实现Modbus通讯协议的根 ...
- OC对象本质
@interface person:NSObject{ @public int _age; } @end @implementation person @end @interface student: ...
- flutter No material widget found textfield widgets require a material widget ancestor
Error states that TextField widgets require a Material widget ancestor. Simply wrapping your whole l ...