去博客园看该题解

题意

第一行输入T,有T组数据。
对于每组数据,给出一棵树,先输入n,然后n-1行,每行两个数a,b,表示a是b的父亲;第n行输入两个数A,B表示询问A和B的最近公共祖先。

题解

LCA模板题。

参见LCA学习笔记

LCA倍增算法&POJ1330标程

#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
const int N=+;
vector <int> son[N];
int T,n,depth[N],fa[N][],in[N],a,b;
void dfs(int prev,int rt){
depth[rt]=depth[prev]+;
fa[rt][]=prev;
for (int i=;(<<i)<=depth[rt];i++)
fa[rt][i]=fa[fa[rt][i-]][i-];
for (int i=;i<son[rt].size();i++)
dfs(rt,son[rt][i]);
}
int LCA(int a,int b){
if (depth[a]>depth[b])
swap(a,b);
for (int i=depth[b]-depth[a],j=;i>;i>>=,j++)
if (i&)
b=fa[b][j];
if (a==b)
return a;
int k;
for (k=;(<<k)<=depth[a];k++);
for (;k>=;k--)
if ((<<k)<=depth[a]&&fa[a][k]!=fa[b][k])
a=fa[a][k],b=fa[b][k];
return fa[a][];
}
int main(){
scanf("%d",&T);
while (T--){
scanf("%d",&n);
for (int i=;i<=n;i++)
son[i].clear();
memset(in,,sizeof in);
for (int i=;i<n;i++){
scanf("%d%d",&a,&b);
son[a].push_back(b);
in[b]++;
}
depth[]=-;
int rt=;
for (int i=;i<=n&&rt==;i++)
if (in[i]==)
rt=i;
dfs(,rt);
scanf("%d%d",&a,&b);
printf("%d\n",LCA(a,b));
}
return ;
}

POJ1330Nearest Common Ancestors的更多相关文章

  1. poj1330Nearest Common Ancestors 1470 Closest Common Ancestors(LCA算法)

    LCA思想:http://www.cnblogs.com/hujunzheng/p/3945885.html 在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好 ...

  2. poj----1330Nearest Common Ancestors(简单LCA)

    题目连接  http://poj.org/problem?id=1330 就是构建一棵树,然后问你两个节点之间最近的公共父节点是谁? 代码: /*Source Code Problem: 1330 U ...

  3. POJ1330Nearest Common Ancestors——近期公共祖先(离线Tarjan)

    http://poj.org/problem? id=1330 给一个有根树,一个查询节点(u,v)的近期公共祖先 836K 16MS #include<iostream> #includ ...

  4. POJ-1330--Nearest Common Ancestors(离线LCA)

    LCA离线算法 它需要一次输入所有的询问,然后有根节点开始进行深度优先遍历(DFS),在深度优先遍历的过程中,进行并查集的操作,同时查询询问,返回结果. 题意: 求A ,B两点的最近公共祖先 分析: ...

  5. poj1330Nearest Common Ancestors(LCA小结)

    题目请戳这里 题目大意:意如其名. 题目分析:本题只有一个查询,所以可以各种乱搞过去. 不过对于菜鸟而言,还是老老实实练习一下LCA算法. LCA有很多经典的算法.按工作方式分在线和离线2种. tar ...

  6. POJ1330Nearest Common Ancestors最近公共祖先LCA问题

    用的离线算法Tarjan 该算法的详细解释请戳 http://www.cnblogs.com/Findxiaoxun/p/3428516.html 做这个题的时候,直接把1470的代码copy过来,改 ...

  7. 【LCA倍增】POJ1330-Nearest Common Ancestors

    [知识点:离线算法&在线算法] 一个离线算法,在开始时就需要知道问题的所有输入数据,而且在解决一个问题后就要立即输出结果. 一个在线算法是指它可以以序列化的方式一个个的处理输入,也就是说在开始 ...

  8. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  9. [最近公共祖先] POJ 1330 Nearest Common Ancestors

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27316   Accept ...

随机推荐

  1. python学习第天14天。

    模块 什么是模块 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写的代码( ...

  2. Vue -- 数据监听

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. android中的LaunchMode详解----四种加载模式

    Activity有四种加载模式: standard singleTop singleTask singleInstance 配置加载模式的位置在AndroidManifest.xml文件中activi ...

  4. 在Ubuntu 15下搭建V/P/N服务器pptpd安装和配置

    在Ubuntu 15下搭建VPN服务器pptpd安装和配置 在ubuntu下配置vpn的方式有很多种,其中比较常见的是pptpd,它配置简单,但是安全性不高,不过对于一般使用来说足够了,我按照程搭建了 ...

  5. nodejs之glob与globby

    glob glob允许使用规则,从而获取对应规则匹配的文件.这个glob工具基于javascript.它使用了 minimatch 库来进行匹配 安装 npm install glob 引入 cons ...

  6. 声明寄存器ROM

    :] ROM [:] ; integer i; initial begin ;i<=;i=i+) begin ROM[i] <= {{'b0}}; end end 同时可以考虑双端口ROM ...

  7. verilog-产生axis数据流

    首先这是产生aixs数据流的代码 `timescale 1ps/1ps `default_nettype none module axis_switch_0_example_master #( ) ( ...

  8. cf862d 交互式二分

    /* 二分搜索出一个01段或10即可 先用n个0确定1的个数num 然后测试区间[l,mid]是否全是0或全是1 如果是,则l=mid,否则r=mid,直到l+1==r 然后再测试l是1还是r是1 如 ...

  9. Git使用二:git与svn的区别与工作流程

    svn记录的是每一次版本变动的内容,三角形代表改动的内容 git是将每个版本独立保存 git的三棵树:工作区域.暂存区域.git仓库 工作目录:平时存放项目的地方暂存区域:临时存放改动,即将提交到仓库 ...

  10. Nginx详解二十七:Nginx架构篇之安全篇

    1.常见的恶意行为:爬虫行为和恶意抓取.资源盗用 解决方案: 基础防盗链功能:不让恶意用户能轻易爬去网站对外数据 secure_link_module模块:对数据安全性提高,加密验证和失效性,适合核心 ...