题意:n*m的棋盘,一个机器人在(i,j)处,每次等概率地停在原地,向左移动一格,向右移动一格,向下移动一格(不能移出棋盘).求走到最后一行所需期望步数.n<=1000,m<=1000

一个看起来可以用来DP的顺序是永远只能从上面走到下面,但同一行之间的转移会出现环.如果n和m的范围稍微小一点,我们可以像SDOI走迷宫一题跑一个分层的高斯消元,但这个题的范围比较大,会超时,但这道题的背景暗示我们列出来的方程组会比较规则,我们不妨先把方程列出来看看有什么特点.

设F[i][j]为从第i行第j列走到最后一行的期望步数

则有

F[i][1]=1+F[i][1]/3+F[i][2]/3+F[i+1]/3

F[i][j]=1+F[i][j]/4+F[i][j-1]/4+F[i][j+1]/4+F[i+1][j]/4,2<=j<=m-1

F[i][m]=1+F[i][m-1]/3+F[i+1][m]/3+F[i][m]/3

不妨仍考虑从第i+1行推到第i行.那么我们在求解F[i][1…m]的时候应当已经知道F[i+1][1…m],边界显然是F[n][j]=0

对于一行,有两个方程只有两个未知数,m-2个方程有三个未知数

如果两个方程里面是同两个未知数,我们可以直接解出这两个未知数,但现在F[i][1]和F[i][m]的未知数并不一定是同两个,我们可以考虑对这些式子进行变形.

F[i][1]的方程和F[i][1],F[i][2]有关,F[i][2]的方程和F[i][1],F[i][2],F[i][3]有关,那么我们可以用这两个方程消掉F[i][1],得到关于F[i][2]和F[i][3]的二元一次方程,接下来再和F[i][3]的方程相消,可以得到关于F[i][3]和F[i][4]的方程….最终我们就可以解出最右端的F[i][m],此后顺着推回来,复杂度O(n).

实现的时候我把每个二元一次方程表示成F[i][j]=a[j]*F[i][j+1]+b[j]的形式,比较容易理解.

转移的式子可能需要简单推一下,见代码.

注意m=1的情况要特判.

#include<cstdio>
double f[][];
double a[],b[];
int main(){
int n,m,x0,y0;scanf("%d%d%d%d",&n,&m,&x0,&y0);
if(m==){
a[n]=;
for(int i=n-;i>=x0;--i){
a[i]=a[i+]+;
}
printf("%.4f\n",a[x0]);
}else{
for(int i=;i<=m;++i)f[n][i]=;
for(int i=n-;i>=x0;--i){
a[]=0.5;b[]=f[i+][]/+1.5;
for(int j=;j<m;++j){
b[j]=b[j-]/4.0+f[i+][j]/4.0+1.0;
a[j]=0.25;
a[j]/=(0.75-a[j-]/4.0);b[j]/=(0.75-a[j-]/4.0);
}
f[i][m]=(b[m-]+f[i+][m]+3.0)/(-a[m-]);
for(int j=m-;j>=;--j)f[i][j]=b[j]+a[j]*f[i][j+];
}
printf("%.4f\n",f[x0][y0]);
}
return ;
}

CodeForces 24D Broken Robot的更多相关文章

  1. CodeForces 24D Broken robot(期望+高斯消元)

    CodeForces 24D Broken robot 大致题意:你有一个n行m列的矩形板,有一个机器人在开始在第i行第j列,它每一步会随机从可以选择的方案里任选一个(向下走一格,向左走一格,向右走一 ...

  2. CodeForces 24D Broken robot (概率DP)

    D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  3. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  4. codeforces 24d Broken robot 期望+高斯消元

    题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望 ...

  5. CF 24 D. Broken robot

    D. Broken robot 链接. 题意: 一个方格,从(x,y)出发,等价的概率向下,向左,向右,不动.如果在左右边缘上,那么等价的概率不动,向右/左,向下.走到最后一行即结束.求期望结束的步数 ...

  6. [Codeforces-div.1 24D] Broken robots

    [Codeforces-div.1 24D] Broken robots 试题分析 显然设\(f_{i,j}\)为到\((i,j)\)的期望步数,将转移表达式列出来. 首先自己跟自己的项消掉. 然后规 ...

  7. 『Broken Robot 后效性dp 高斯消元』

    Broken Robot Description 你作为礼物收到一个非常聪明的机器人走在矩形板上.不幸的是,你明白它已经破碎并且行为相当奇怪(随机).该板由N行和M列单元组成.机器人最初位于第i行和第 ...

  8. CodeForces 1251A --- Broken Keyboard

    [CodeForces 1251A --- Broken Keyboard ] Description Recently Polycarp noticed that some of the butto ...

  9. Broken robot CodeForces - 24D (概率DP)

    You received as a gift a very clever robot walking on a rectangular board. Unfortunately, you unders ...

随机推荐

  1. eclipse SE增加Web开发插件

    最近接触了些java项目,之前安装了eclipse SE版本.没有Web开发插件,调试不了Web代码.点击“Window”--“Preference” 左边菜单栏是找不到“Server”项来配置服务器 ...

  2. js picker webapp仿ios picker

    iosselect 在webapp下的一个picker组件 可以轻松实现各类选择器效果.比如地区选择 时间选择 日期选择等. 可以定制依赖关系,可以定制选择层级,可以定制高度 展示项数.无论你是px还 ...

  3. 使用WebRTC搭建前端视频聊天室——数据通道篇

    本文翻译自WebRTC data channels 在两个浏览器中,为聊天.游戏.或是文件传输等需求发送信息是十分复杂的.通常情况下,我们需要建立一台服务器来转发数据,当然规模比较大的情况下,会扩展成 ...

  4. Android Git 客户端

    1.tortoisegit Git下载地址: https://tortoisegit.org/download/ SVN下载地址: https://tortoisesvn.net/downloads. ...

  5. ORACLE分区表梳理系列(一)- 分区表概述、分类、使用方法及注意事项

    版权声明:本文发布于http://www.cnblogs.com/yumiko/,版权由Yumiko_sunny所有,欢迎转载.转载时,请在文章明显位置注明原文链接.若在未经作者同意的情况下,将本文内 ...

  6. 3.awk数组详解及企业实战案例

    awk数组详解及企业实战案例 3.打印数组: [root@nfs-server test]# awk 'BEGIN{array[1]="zhurui";array[2]=" ...

  7. 烂泥:zabbix3.0安装与配置

    本文由ilanniweb提供友情赞助,首发于烂泥行天下 想要获得更多的文章,可以关注我的微信ilanniweb 这个月又快过完了,最近也比较忙,没时间写文章,今天挤点时间把zabbix3.0安装与配置 ...

  8. vsftpd 安装配置

    # vsftp 安装yum install vsftpd -y # 配置用户名密码时需要yum install db* db4* -y# 启动vsftpdservice vsftpd start # ...

  9. [转载]fullPage.js中文api 配置参数~

    fullPage.js中文api 配置参数 选项 类型 默认值 说明 verticalCentered 字符串 true 内容是否垂直居中 resize 布尔值 false 字体是否随着窗口缩放而缩放 ...

  10. 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)

    对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...