题意:n*m的棋盘,一个机器人在(i,j)处,每次等概率地停在原地,向左移动一格,向右移动一格,向下移动一格(不能移出棋盘).求走到最后一行所需期望步数.n<=1000,m<=1000

一个看起来可以用来DP的顺序是永远只能从上面走到下面,但同一行之间的转移会出现环.如果n和m的范围稍微小一点,我们可以像SDOI走迷宫一题跑一个分层的高斯消元,但这个题的范围比较大,会超时,但这道题的背景暗示我们列出来的方程组会比较规则,我们不妨先把方程列出来看看有什么特点.

设F[i][j]为从第i行第j列走到最后一行的期望步数

则有

F[i][1]=1+F[i][1]/3+F[i][2]/3+F[i+1]/3

F[i][j]=1+F[i][j]/4+F[i][j-1]/4+F[i][j+1]/4+F[i+1][j]/4,2<=j<=m-1

F[i][m]=1+F[i][m-1]/3+F[i+1][m]/3+F[i][m]/3

不妨仍考虑从第i+1行推到第i行.那么我们在求解F[i][1…m]的时候应当已经知道F[i+1][1…m],边界显然是F[n][j]=0

对于一行,有两个方程只有两个未知数,m-2个方程有三个未知数

如果两个方程里面是同两个未知数,我们可以直接解出这两个未知数,但现在F[i][1]和F[i][m]的未知数并不一定是同两个,我们可以考虑对这些式子进行变形.

F[i][1]的方程和F[i][1],F[i][2]有关,F[i][2]的方程和F[i][1],F[i][2],F[i][3]有关,那么我们可以用这两个方程消掉F[i][1],得到关于F[i][2]和F[i][3]的二元一次方程,接下来再和F[i][3]的方程相消,可以得到关于F[i][3]和F[i][4]的方程….最终我们就可以解出最右端的F[i][m],此后顺着推回来,复杂度O(n).

实现的时候我把每个二元一次方程表示成F[i][j]=a[j]*F[i][j+1]+b[j]的形式,比较容易理解.

转移的式子可能需要简单推一下,见代码.

注意m=1的情况要特判.

#include<cstdio>
double f[][];
double a[],b[];
int main(){
int n,m,x0,y0;scanf("%d%d%d%d",&n,&m,&x0,&y0);
if(m==){
a[n]=;
for(int i=n-;i>=x0;--i){
a[i]=a[i+]+;
}
printf("%.4f\n",a[x0]);
}else{
for(int i=;i<=m;++i)f[n][i]=;
for(int i=n-;i>=x0;--i){
a[]=0.5;b[]=f[i+][]/+1.5;
for(int j=;j<m;++j){
b[j]=b[j-]/4.0+f[i+][j]/4.0+1.0;
a[j]=0.25;
a[j]/=(0.75-a[j-]/4.0);b[j]/=(0.75-a[j-]/4.0);
}
f[i][m]=(b[m-]+f[i+][m]+3.0)/(-a[m-]);
for(int j=m-;j>=;--j)f[i][j]=b[j]+a[j]*f[i][j+];
}
printf("%.4f\n",f[x0][y0]);
}
return ;
}

CodeForces 24D Broken Robot的更多相关文章

  1. CodeForces 24D Broken robot(期望+高斯消元)

    CodeForces 24D Broken robot 大致题意:你有一个n行m列的矩形板,有一个机器人在开始在第i行第j列,它每一步会随机从可以选择的方案里任选一个(向下走一格,向左走一格,向右走一 ...

  2. CodeForces 24D Broken robot (概率DP)

    D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  3. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  4. codeforces 24d Broken robot 期望+高斯消元

    题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望 ...

  5. CF 24 D. Broken robot

    D. Broken robot 链接. 题意: 一个方格,从(x,y)出发,等价的概率向下,向左,向右,不动.如果在左右边缘上,那么等价的概率不动,向右/左,向下.走到最后一行即结束.求期望结束的步数 ...

  6. [Codeforces-div.1 24D] Broken robots

    [Codeforces-div.1 24D] Broken robots 试题分析 显然设\(f_{i,j}\)为到\((i,j)\)的期望步数,将转移表达式列出来. 首先自己跟自己的项消掉. 然后规 ...

  7. 『Broken Robot 后效性dp 高斯消元』

    Broken Robot Description 你作为礼物收到一个非常聪明的机器人走在矩形板上.不幸的是,你明白它已经破碎并且行为相当奇怪(随机).该板由N行和M列单元组成.机器人最初位于第i行和第 ...

  8. CodeForces 1251A --- Broken Keyboard

    [CodeForces 1251A --- Broken Keyboard ] Description Recently Polycarp noticed that some of the butto ...

  9. Broken robot CodeForces - 24D (概率DP)

    You received as a gift a very clever robot walking on a rectangular board. Unfortunately, you unders ...

随机推荐

  1. java类与实例

    最近在看设计模式,感觉自己对java的三大特性的理解不够清晰,搞不清楚抽象类.接口.泛型的用处和优缺点.设计模式学了一半,想着还是停下来脑补一下java的基础,就从java对象开始吧. 一.java对 ...

  2. nodejs微信公众号快速开发|自定义关键字回复

    一点说明: nodejs 微信api 扩展,集成大部分功能. 案例 https://github.com/leiroc/node-wxeasy-example 上传example中文件到服务器 ,然后 ...

  3. awk应用

    h3 { color: rgb(255, 255, 255); background-color: rgb(30,144,255); padding: 3px; margin: 10px 0px } ...

  4. NSURLConnection实现文件上传和AFNetworking实现文件上传

    请求的步骤分为4步 1.创建请求 2.设置请求头(告诉服务器这是一个文件上传的请求) 3.设置请求体 4.发送请求 NSURLConnection实现文件上传 // 1.创建请求 NSURL *url ...

  5. 贝塞尔曲线(UIBezierPath)属性、方法汇总

    UIBezierPath主要用来绘制矢量图形,它是基于Core Graphics对CGPathRef数据类型和path绘图属性的一个封装,所以是需要图形上下文的(CGContextRef),所以一般U ...

  6. 网络安全——数据的加密与签名,RSA介绍

    一. 密码概述 发送者对明文进行加密然后生成密文,接受者再对密文解密得到明文的过程. 现在使用的所有加密算法都是公开的!但是密钥肯定不是公开的. 1 散列(哈希)函数 通常有MD5.SHA1.SHA2 ...

  7. vs2010中如何设置Visual Assist方便地使用现成的代码编辑器风格

    风格setting可以在下面网站上获取: http://studiostyl.es/ 在VS2010+VA直接使用会有2个显著的问题: 1,有些符号颜色太深,与黑色背景几乎融为一体: 2,光标落入大小 ...

  8. 随笔分类 - [C#6] 新增特性

    C#6.0中引入的基本特性总结 [C#6] 7-索引初始化器 摘要: 0. 目录 C#6 新增特性目录 1. 老版本的代码 早C#3中引入的集合初始化器,可是让我们用上面的语法来在声明一个字典或者集合 ...

  9. WEB页面中常见的四种控件的必须的测试

    以下为常规的需求,除非需求有明确说明,如密码输入框中可以输入空格.   输入框 1. 为空,但页面中明确说明不能为空(带有星号或者只有这一个输入框),有以下两种情况: a. 不进行输入或者使其为空:焦 ...

  10. Oracle的SQL基础

    1.了解SQL的种类 (1)DDL 数据定义语言:定义数据库中数据要如何存储的,包括对数据库对象的创建(create)修改(alter)删除(drop)的操作,这些对象主要有数据库,数据表,视图,索引 ...