传送门


思路

首先看到生成树计数,想到Matrix-Tree定理。

然而,这题显然是不能Matrix-Tree定理硬上的,因为还有每个公司只能建一条路的限制。这个限制比较恶心,尝试去除它。

怎么除掉它呢?

容斥!

每当有恶心的限制时,用容斥去除它,也许这是套路?

枚举有哪几所公司承保了所有道路的修建,然后大力Matrix-Tree定理即可。

复杂度\(O(n^32^n)\)有点大,但还是可以过的。


代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 20
#define mod 1000000007ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
inline void print(register int x)
{
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n;
vector<pii>e[sz]; ll A[sz][sz];
void clear(){memset(A,0,sizeof(A));}
void add(int u,int v){++A[u][u];++A[v][v];--A[u][v];--A[v][u];} ll calc(int n)
{
ll ans=1;
rep(i,1,n)
{
if (!A[i][i])
{
int tmp=-1;
rep(j,i+1,n) if (A[j][i]) tmp=j;
if (tmp==-1) return 0;
swap(A[i],A[tmp]);
}
ll I=inv(A[i][i]);
rep(j,i+1,n) if (A[j][i])
{
ll t=I*A[j][i]%mod;
rep(k,i,n) A[j][k]=(A[j][k]-A[i][k]*t%mod+mod)%mod;
}
ans=ans*A[i][i]%mod;
}
return ans;
} int main()
{
file();
read(n);
int x,y,z;
rep(i,1,n-1)
{
read(z);
while (z--) read(x,y),e[i].push_back(MP(x,y));
}
ll ans=0;
rep(id,0,(1<<(n-1))-1)
{
rep(i,1,n-1) if (id&(1<<(i-1))) for (auto p:e[i]) add(p.fir,p.sec);
ll cur=calc(n-1);
ans+=(((n-1-__builtin_popcount(id))&1)?-1:1)*cur;
ans=(ans%mod+mod)%mod;
clear();
}
cout<<ans;
return 0;
}

洛谷P4336 [SHOI2016]黑暗前的幻想乡 [Matrix-Tree定理,容斥]的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. [SHOI2016] 黑暗前的幻想乡 - 矩阵树定理,容斥

    #include <bits/stdc++.h> using namespace std; #define int long long const int N = 20; const in ...

  3. Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡

    \(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...

  4. Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理

    真是菜到爆炸....容斥写反(反正第一次写qwq) 题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数. 矩阵树定理+容斥原理(注意到$n$不是很大) 枚举公司参与与否的 ...

  5. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  6. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  7. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  8. 题解 P4336 [SHOI2016]黑暗前的幻想乡

    题解 前置芝士 :矩阵树定理 本题是一道计数题,有两个要求: 建造的公路构成一颗生成树 每条公路由不同的公司建造,每条公路与一个公司一一映射 那么看到这两个要求后,我们很容易想到第一个条件用矩阵树定理 ...

  9. 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥

    同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...

随机推荐

  1. 开源框架.netCore DncZeus学习(一)npm安装

    今天看到一个不错的开源项目DncZeus, https://github.com/lampo1024/DncZeus 整个界面挺漂亮,而且权限做到了按钮级别,功能也较容易扩展,刚好学习VUE纯看文章很 ...

  2. String,StringBuilder,StringBuffer区别

    一.String,StringBuilder,StringBuffer的大概了解 大家知道String,StringBuilder,StringBuffer三个的基本应用场景. String会一直创建 ...

  3. undefined symbol

    参考链接:  https://blog.csdn.net/shatterheart/article/details/52440149

  4. 【节点-添加标签】【节点-删除标签】【显示年-月-日-星期】【math算数】【正则表达式】

    1.节点-添加标签 <body><div id="div1"><p id="p1">这是一个段落.</p>< ...

  5. G - Intersecting Rectangles Kattis - intersectingrectangles (扫描线)(判断多个矩形相交)

    题目链接: G - Intersecting Rectangles Kattis - intersectingrectangles 题目大意:给你n个矩形,每一个矩形给你这个矩形的左下角的坐标和右上角 ...

  6. lcx工具使用

    0x01 为什么要作端口转发? 如果外网服务器,我们直接连接其端口就能进行访问,不需要进行端口转发.所以端口转发常用于穿透防火墙. 0x02 快速使用 前提:你的计算机处于公网,被控制的计算机能访问外 ...

  7. 根据传入的文件名称动态从moglifs图片服务器拿到pdf文档并在线浏览

    1.通过百度编辑器上传pdf文档等附件时,在上传方法中将返回的url进行设定,以达到后期点击后可进行浏览的效果: public static final State save(HttpServletR ...

  8. gulp3 和 gulp4 区别

    运行gulp项目报错:AssertionError: Task function must be specified 今天像往常一样,编写文章,并使用gulp bulid压缩代码,但是一运行:gulp ...

  9. 20165221 JAVA第五周学习心得

    课本知识点 内部类与异常类 内部类:在一个类中定义另一个类 特点:外嵌类的成员在内部类仍然有效,内部类也可调用外嵌类的方法,内部类的类体不能声明类变量及类方法 非内部类不能是static类 匿名类:创 ...

  10. Springboot 配置 ssl 实现HTTPS 请求 & Tomcat配置SSL支持https请求

    SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议.TLS与 ...