P3645-[APIO2015]雅加达的摩天楼【bfs,根号分治】
正题
题目链接:https://www.luogu.com.cn/problem/P3645
题目大意
\(n\)个点,\(m\)条狗,第\(i\)条狗可以往左或者右跳恰好\(p_i\)步,开始是\(0\)号狗,每次跳跃到达一个点可以选择换一条狗,求到\(1\)号狗所在点的最短路。
解题思路
为了方便设\(n,m\)同级
对于\(p_i\leq \sqrt n\)的狗,\(p_i\)的种类只有\(\sqrt n\)级别,每条狗能到达的点是\(O(n)\)级别
对于\(p_i>\sqrt n\)的狗,\(p_i\)的种类有\(O(n)\)级别,每条狗能到达的点数是\(O(\sqrt n)\)级别。
所以总共的状态数不超过\(O(n\sqrt n)\)个,暴力\(bfs\)就好了。
对于储存状态可以按照\(\sqrt n\)为分界用两种不同的方式储存,当然还有更暴力的方法就是直接用\(bitset\)存。
时间复杂度\(O(n\sqrt n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<bitset>
#include<vector>
#define mp(x,y) make_pair(x,y)
using namespace std;
const int N=3e4+10;
int n,m,S,T;
bitset<N>v[N];
vector<int>s[N];
queue<pair<pair<int,int> ,int> >q;
int bfs(){
for(int i=0;i<s[S].size();i++)
q.push(mp(mp(S,s[S][i]),0)),v[S][s[S][i]]=1;
while(!q.empty()){
int x=q.front().first.first,w=q.front().first.second,d=q.front().second;
int y=x-w;
if(y>=0){
if(y==T)return d+1;
for(int i=0;i<s[y].size();i++)
if(!v[y][s[y][i]])
q.push(mp(mp(y,s[y][i]),d+1)),v[y][s[y][i]]=1;
if(!v[y][w])q.push(mp(mp(y,w),d+1)),v[y][w]=1;
}
y=x+w;
if(y<n){
if(y==T)return d+1;
for(int i=0;i<s[y].size();i++)
if(!v[y][s[y][i]])
q.push(mp(mp(y,s[y][i]),d+1)),v[y][s[y][i]]=1;
if(!v[y][w])q.push(mp(mp(y,w),d+1)),v[y][w]=1;
}
q.pop();
}
return -1;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
int x,w;
scanf("%d%d",&x,&w);
if(i==0)S=x;
if(i==1)T=x;
s[x].push_back(w);
}
if(S==T)return puts("0")&0;
printf("%d\n",bfs());
return 0;
}
P3645-[APIO2015]雅加达的摩天楼【bfs,根号分治】的更多相关文章
- luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治
LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...
- 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)
[题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...
- 洛谷P3645 [APIO2015]雅加达的摩天楼
题目描述 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N − 1.除了这 NN 座摩天楼外,雅加达市没有其他摩天楼. 有 M 只叫做 “doge” 的神 ...
- 洛咕 P3645 [APIO2015]雅加达的摩天楼
暴力连边可以每个bi向i+kdi连边权是k的边. 考虑这样的优化: 然后发现显然是不行的,因为可能还没有走到一个dog的建筑物就走了这个dog的边. 然后就有一个很妙的方法--建一个新的图,和原图分开 ...
- 洛谷P3645 [APIO2015]雅加达的摩天楼(最短路+分块)
传送门 这最短路的建图怎么和网络流一样玄学…… 一个最朴素的想法是从每一个点向它能到达的所有点连边,边权为跳的次数,然后跑最短路(然而边数是$O(n^2)$除非自创复杂度比spfa和dijkstra还 ...
- luogu P3645 [APIO2015]雅加达的摩天楼
luogu 暴力? 暴力! 这个题有点像最短路,所以设\(f_{i,j}\)表示在\(i\)号楼,当前\(doge\)跳跃能力为\(j\)的最短步数,转移要么跳一步到\(f_{i+j,j}\)和\(f ...
- 洛谷$P3645\ [APIO2015]$雅加达的摩天楼 最短路
正解:最短路 解题报告: 传送门$QwQ$ 考虑暴力连边,发现最多有$n^2$条边.于是考虑分块 对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义? ...
- bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图
[Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 644 Solved: 238[Submit][Status][D ...
- 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路
[BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...
- BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路
4070: [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 464 Solved: 164[Submit][Sta ...
随机推荐
- 被MySQL慢日志查询搞废了?3分钟教你快速定位慢查询问题!
一条慢查询会造成什么后果?刚开始使用MySQL的开发.初级DBA 以为就是简单的查询变慢些,体验稍微有一丢丢影响,殊不知,慢查询的破坏力远不止如此.业务高峰期,这头SQL还没处理完,大量新的查询请求堆 ...
- 使用F#编写PowerShell模块
▲F#和PowerShell模块 作为可能是人类世界最强大的Shell,PowerShell最大的特点是能够直接在命令间传递.NET对象,而支持这种能力的命令被称作cmdlet.自己编写PowerSh ...
- ASP.NET Core教程:ASP.NET Core使用AutoMapper
一.前言 在实际的项目开发过程中,我们使用各种ORM框架可以使我们快捷的获取到数据,并且可以将获取到的数据绑定到对应的List<T>中,然后页面或者接口直接显示List<T>中 ...
- C#多线程---Task实现异步
一.场景 使用Task来进行累加操作. 二.例子-Task使用 1 using System; 2 using System.Collections.Generic; 3 using System.L ...
- Java随手记录
Spring @Configuration注解及配置方法 转自:https://www.jb51.net/article/184822.htm Spring @Configuration注解 Spri ...
- BUUCTF-[CISCN2019 华北赛区 Day1 Web5]CyberPunk
BUUCTF-[CISCN2019 华北赛区 Day1 Web5]CyberPunk 看题 看源码有提示?file=? 文件包含漏洞,可以利用这个漏洞读取源码. 分析 index.php?file=p ...
- 【Spring 持久层】Spring 与 Mybatis 整合
持久层整合总述 1.Spring 框架为什么要与持久层技术进行整合? JavaEE开发需要持久层进行数据库的访问操作 JDBC.Hibernate.MyBatis 进行持久开发过程存在大量的代码冗余 ...
- Stream流用于按照对象中某一属性来对集合去重+简单数据类型集合的去重
上次对Stream流来进行分组的文章很多人看,想看的可以来这: Stream流来进行集合分组 这次小编又带来Stream的去重,话不多数,直接上代码: 这是对简单数据类型的去重 //字符串集合进行简单 ...
- Python - 面向对象编程 - __init__() 构造方法
什么是构造方法 在创建类时, 可手动添加一个 __init__() 方法,称为构造方法,这是一个实例方法 构造方法用于创建实例对象时使用,每当创建一个类的实例对象时,Python 解释器都会自动调 ...
- openswan IPSec专栏目录锦集
为了方便查阅现有的文章,特准备一个目录页供后续查询使用 专栏序言 1. 基础知识 openswan任务调度基础知识之信号 2. openswan环境搭建 openswan框架和编译时说明 opensw ...