前言

比赛链接:

Div.1 : http://47.110.12.131:9016/contest/16

Div.2 : http://47.110.12.131:9016/contest/15

Div.2——Angel Beats!

下面是 Div.2 的题解。

A. Favorite Flavor

对于 \(40\%\) 的数据,考虑 \(O(n)\) 预处理,然后 \(O(1)\) 求解,时间复杂度为 \(O(n+q)\)。

对于 \(100\%\) 的数据,考虑在线处理,即模拟题意过程,时间复杂度为 \(O(q\log n)\)

但实际上,本题有 \(O(\log^3 n+q)\) 的做法,即预处理的时候考虑分别枚举 \(2,3,5\) 的次幂,然后 \(O(1)\) 求解。

scanf("%d",&q);
while(q--)
{
ans=0;
scanf("%lld",&n);
while(n%5==0) ans+=3,n/=5;
while(n%3==0) ans+=2,n/=3;
while(n%2==0) ans+=1,n/=2;
if(n>1) continue;
else res^=ans;
}
printf("%d",res);

B. Dancer in the Dark

对于 \(40\%\) 的数据,枚举所有情况,时间复杂度约为 \(O(n^m)\)。

对于 \(100\%\) 的数据,我们容易算得答案为 \(m^n-m\times (m-1)^{n-1}\),于是快速幂求解即可,时间复杂度为 \(O(\log n)\)。

printf("%d",((qpow(m,n)-1ll*m*qpow(m-1,n-1))%mod+mod)%mod);

C. In Your Memory

咕咕咕……

D. Change the World

咕咕咕……

E. Stairway to Heaven

对于 \(20\%\) 的数据,枚举每个数的颜色,时间复杂度为 \(O(n^n)\),还需要稍微卡卡常。

对于 \(50\%\) 的数据,我们仔细思考一下这个问题,它其实就是求最长不上升子序列的长度(可以自己手模几组试试),于是随便 \(O(n^2)\) 求解。

对于 \(100\%\) 的数据,在求最长不上升子序列长度的时候考虑二分转移,或者树状数组维护,这都非常经典,时间复杂度为 \(O(n\log n)\)。

dp[m=1]=a[1];
for(Re int i=2;i<=n;i++)
{
if(dp[m]>a[i]) dp[++m]=a[i];
else dp[lower_bound(dp+1,dp+m+1,a[i],greater<int>())-dp]=a[i];
}
printf("%d",m);

Div.1——玉子市场

下面是 Div.1 的题解。

A. ドラマチックマーケットライド

咕咕咕……

B. ねぐせ

咕咕咕……

C. プリンシプル

这题出题人也想不出什么部分分做法,于是就不给部分分了(

我们只需要考虑在原图的一棵生成树上怎样构造答案即可。

由于图连通,故一定有解。

以 \(1\) 号节点为根,节点上的整数设为任意值,然后遍历一下原图。

当遍历到一条边 \((u,v,c)\) 时,若 \(num[u]=c\),则 \(num[v]\not=num[u]\);否则,\(num[v]=c\)。

这样做的话,得到的显然是连通的,时间复杂度为 \(O(n+m)\)。

inline void dfs(int u)
{
for(Re int i=hd[u];i;i=e[i].nxt)
{
int v=e[i].ver,c=e[i].val;
if(cl[v]) continue;
if(c==cl[u]) cl[v]=(cl[u]+1)%n+1;
else cl[v]=c;
dfs(v);
}
}

D. 星とピエロ

对于 \(20\%\) 的数据,考虑枚举第 \(k\) 小的数是哪一个,然后检验用显然的 DP 去做,时间复杂度为 \(O(n^2ms)\)。

对于 \(60\%\) 的数据,考虑在枚举第 \(k\) 小的数的时候二分一下,DP 不变,时间复杂度为 \(O(nms\log n)\)。

对于 \(100\%\) 的数据,考虑记录一个数组 \(nxt[i]\) 表示包含第 \(i\) 个点的线段最右端,然后去进行 DP 就会发现 \(m\) 没用了,时间复杂度为 \(O(ns\log n)\)。

#include<bits/stdc++.h>
#define Re register
using namespace std; const int N=5005;
int n,m,s,k,a[N],aa[N],ans=-1;
int nxt[N],sum[N],f[N][N]; inline bool check(int mid)
{
memset(f,0,sizeof f);
for(Re int i=1;i<=n;i++)
{
sum[i]=sum[i-1]+(a[i]<=aa[mid]);
}
for(Re int i=1;i<=s;i++)
{
for(Re int j=1;j<=n;j++)
{
f[i][j]=max(f[i][j],f[i-1][j]);
}
for(Re int j=0;j<=n;j++)
{
if(nxt[j])
{
f[i][nxt[j]]=max(f[i][nxt[j]],f[i-1][j-1]+sum[nxt[j]]-sum[j-1]);
}
}
for(Re int j=1;j<=n;j++)
{
f[i][j]=max(f[i][j],f[i][j-1]);
}
}
return f[s][n]>=k;
} int main()
{
scanf("%d%d%d%d",&n,&m,&s,&k);
for(Re int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
aa[i]=a[i];
}
sort(aa+1,aa+n+1);
for(Re int i=1;i<=m;i++)
{
int l,r;
scanf("%d%d",&l,&r);
for(Re int j=l;j<=r;j++)
{
nxt[j]=max(nxt[j],r);
}
}
int l=1,r=n,mid;
while(l<=r)
{
mid=l+r>>1;
if(!check(mid)) l=mid+1;
else ans=aa[mid],r=mid-1;
}
printf("%d",ans);
return 0;
}

E. うさぎ山から爱をこめて

咕咕咕……

YAOI Round #7 题解的更多相关文章

  1. YAOI Round #5 题解

    前言 比赛链接: Div.1 : http://47.110.12.131:9016/contest/13 Div.2 : http://47.110.12.131:9016/contest/12 D ...

  2. YAOI Round #3 题解

    前言 比赛链接: Div.1 : http://47.110.12.131:9016/contest/7 Div.2 : http://47.110.12.131:9016/contest/8 Div ...

  3. YAOI Round #1 题解

    前言 比赛网址:http://47.110.12.131:9016/contest/3 总体来说,这次比赛是有一定区分度的, \(\text{ACM}\) 赛制也挺有意思的. 题解 A. 云之彼端,约 ...

  4. Codeforces Round #556 题解

    Codeforces Round #556 题解 Div.2 A Stock Arbitraging 傻逼题 Div.2 B Tiling Challenge 傻逼题 Div.1 A Prefix S ...

  5. LibreOJ β Round #2 题解

    LibreOJ β Round #2 题解 模拟只会猜题意 题目: 给定一个长为 \(n\) 的序列,有 \(m\) 次询问,每次问所有长度大于 \(x\) 的区间的元素和的最大值. \(1 \leq ...

  6. Codeforces Round #569 题解

    Codeforces Round #569 题解 CF1179A Valeriy and Deque 有一个双端队列,每次取队首两个值,将较小值移动到队尾,较大值位置不变.多组询问求第\(m\)次操作 ...

  7. Codeforces Round #557 题解【更完了】

    Codeforces Round #557 题解 掉分快乐 CF1161A Hide and Seek Alice和Bob在玩捉♂迷♂藏,有\(n\)个格子,Bob会检查\(k\)次,第\(i\)次检 ...

  8. CFEducational Codeforces Round 66题解报告

    CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...

  9. Google kickstart 2022 Round A题解

    Speed Typing 题意概述 给出两个字符串I和P,问能否通过删除P中若干个字符得到I?如果能的话,需要删除字符的个数是多少? 数据规模 \[1≤|I|,|P|≤10^5 \] 双指针 设置两个 ...

随机推荐

  1. Ubuntu16.04下使用ufw保护docker容器

      ufw屏蔽服务器非docker容器应用端口没有任何问题.问题出在屏蔽不了容器应用对应端口.排除了"ufw使用不当"."docker-compose.yml端口映射不正 ...

  2. .Net Core gRPC 实战(二)

    概述 gRPC 客户端必须使用与服务相同的连接级别安全性.  如调用服务时通道和服务的连接级别安全性不一致,gRPC 客户端就会抛出错误. gRPC 配置使用HTTP gRPC 客户端传输层安全性 ( ...

  3. TVM虚拟机配置

    TVM虚拟机配置 目录 3.1. Supported Guest Operating Systems 3.1.1. Mac OS X Guests 3.1.2. 64-bit Guests 3.2. ...

  4. 使用OneFlow搭建神经网络

    使用OneFlow搭建神经网络 在 识别 MNIST 手写体数字 的例子中,通过 flow.layers 和 flow.nn 中提供的接口搭建了一个简单的 LeNet 网络.下面,将通过LeNet来介 ...

  5. TensorFlow简单线性回归

    TensorFlow简单线性回归 将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.e ...

  6. NOIP2018初赛普及组原题&题解

    NOIP2018初赛普及组原题&题解 目录 NOIP2018初赛普及组原题&题解 原题&答案 题解 单项选择题 第$1$题 第$2$题 第$3$题 第$4$题 第$5$题 第$ ...

  7. ES6中的Map

    今天小编和大家一起探讨一下引用类型中的map,在其中会有一些map与数组联合应用,还有和map类似的weakmap类型的说明,这篇文章同时也增加了一些操作数组的办法和实际应用.大家也可以关注我的微信公 ...

  8. 如何基于 String 实现同步锁?

    如何基于String实现同步锁? 在某些时候,我们可能想基于字符串做一些事情,比如:针对同一用户的并发同步操作,使用锁字符串的方式实现比较合理. 因为只有在相同字符串的情况下,并发操作才是不被允许的. ...

  9. SpringBoot 结合 Spring Cache 操作 Redis 实现数据缓存

    系统环境: Redis 版本:5.0.7 SpringBoot 版本:2.2.2.RELEASE 参考地址: Redus 官方网址:https://redis.io/ 博文示例项目 Github 地址 ...

  10. .Net Core with 微服务 - Elastic APM

    上一次我们介绍了Seq日志聚合组件.这次要给大家介绍的是Elastic APM ,一款应用程序性能监控组件.APM 监控围绕对应用.服务.容器的健康监控,对接口的调用链.性能进行监控.在我们实施微服务 ...