题目链接

大意

给出一个序列,当你在某个点时,有一个向右走的概率\(P_i\)(向左为\(1-P_i\)),

给出\(M\)个操作,操作有两类:

1 X Y Z:把\(P_X\)的值修改为\(\frac{Y}{Z}\)

2 L R:询问你从\(L\)出发,随机游走,在不经过\(L-1\)的情况下到达\(R+1\)的概率

思路

我们对于一个区间设有两个值\(ValL,ValR\),

分别表示从这段区间的左端点出发能赢的概率与从它的右端点出发能赢的概率。

即我们要求的是任意区间的\(ValL\).

考虑一个区间的\(Val\)如何从它的两个子区间转移而来。

首先对于\(ValL\)

肯定有一个\(S1.ValL\times S2.ValL\),表示从\(S1\)的左端点出发到达\(S2\)左端点,再到\(R+1\),但是明显会漏掉在\(S1,S2\)间反复横跳的情况。

我们不妨枚举一下它横跳的次数来计算

\[\sum_{i=0}^{\infty}S1.ValR^i\times (1-S2.ValL)^i
\]

化简为$$\frac{1}{1-S1.ValR\times (1-S2.ValL)}$$

即$$ValL=\frac{S1.ValL\times S2.ValL}{1-S1.ValR\times (1-S2.ValL)}$$


同理,对于\(ValR\),也有横跳的情况,但向左向右横跳的次数就有差距了。

\[(1-S2.ValR)\times S2.ValL\times \sum_{i=0}^{\infty}S1.ValR^{i+1}\times (1-S2.ValL)^i
\]

化简为$$\frac{(1-S2.ValR)\times S2.ValL\times S1.ValR}{1-S1.ValR\times (1-S2.ValL)}$$

同时,\(ValR\)也有不横跳的情况,即\(S2.ValR\).

综合一下

\[ValR=S2.ValR+\frac{(1-S2.ValR)\times S2.ValL\times S1.ValR}{1-S1.ValR\times (1-S2.ValL)}
\]

对于ValL与ValR,可以使用线段树维护。

代码

没打重载,暴力合并

#include<cstdio>
#include<algorithm>
using namespace std;
#define fi first
#define se second
const double ONE=1.0;
const int MAXN=100005;
const int INF=0X3F3F3F3F;
int N,Q;
double P[MAXN];
struct Node{
int l,r;pair<double,double>val;
}s[MAXN*8];
void Push_Up(int rt){
pair<double,double>ret1=s[rt*2].val,ret2=s[rt*2+1].val;
s[rt].val.fi=ret1.fi*ret2.fi/(1-ret1.se*(1-ret2.fi));
s[rt].val.se=ret2.se+(1-ret2.se)*ret2.fi*ret1.se/(1-ret1.se*(1-ret2.fi));
}
void Build(int rt,int l,int r){
s[rt].l=l;s[rt].r=r;
s[rt].val.fi=s[rt].val.se=-INF;
if(l==r){
s[rt].val.fi=P[l];
s[rt].val.se=P[l];
return ;
}
int mid=(l+r)/2;
Build(rt*2,l,mid);
Build(rt*2+1,mid+1,r);
Push_Up(rt);
}
void Insert(int rt,int p,double val){
if(s[rt].l>p||s[rt].r<p)return ;
if(s[rt].l==s[rt].r){s[rt].val.fi=s[rt].val.se=val;return ;}
Insert(rt*2,p,val);Insert(rt*2+1,p,val);Push_Up(rt);
}
pair<double,double>Query(int rt,int l,int r){
pair<double,double>ret;ret.fi=ret.se=-INF;
if(s[rt].l>r||s[rt].r<l)return ret;
if(s[rt].l>=l&&s[rt].r<=r)return s[rt].val;
pair<double,double>ret1,ret2;
ret1=Query(rt*2,l,r);
ret2=Query(rt*2+1,l,r);
if(ret1.fi==-INF&&ret2.fi==-INF)return ret;
if(ret1.fi==-INF)ret=ret2;
else if(ret2.fi==-INF)ret=ret1;
else{
ret.fi=ret1.fi*ret2.fi/(1-ret1.se*(1-ret2.fi));
ret.se=ret2.se+(1-ret2.se)*ret2.fi*ret1.se/(1-ret1.se*(1-ret2.fi));
}
return ret;
}
int main(){
scanf("%d%d",&N,&Q);
for(int i=1,A,B;i<=N;i++){
scanf("%d%d",&A,&B);
P[i]=ONE*A/B;
}
Build(1,1,N);
for(int i=1,k,x,y,z;i<=Q;i++){
scanf("%d%d%d",&k,&x,&y);
if(k==1){
scanf("%d",&z);
Insert(1,x,ONE*y/z);
}
if(k==2)printf("%.10f\n",Query(1,x,y).fi);
}
return 0;
}

【CF712E】Memory and Casinos(数学 期望 DP)的更多相关文章

  1. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

  2. lightoj1038(数学期望dp)

    题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...

  3. 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP

    [BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...

  4. BZOJ 1426: 收集邮票 数学期望 + DP

    Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...

  5. CF712E Memory and Casinos 期望概率

    题意:\(n\)个赌场,每个赌场有\(p_{i}\)的胜率,如果赢了就走到下一个赌场,输了就退回上一个赌场,规定\(1\)号赌场的上一个是\(0\)号赌场,\(n\)号赌场的下一个是\(n + 1\) ...

  6. CF708E-Student‘s Camp【数学期望,dp】

    正题 题目链接:https://www.luogu.com.cn/problem/CF708E 题目大意 有\(n*m\)的矩形网格,然后每次每行最左边和最右边的格子各有\(p=\frac{c}{d} ...

  7. Codeforces Round #370 (Div. 2) E. Memory and Casinos (数学&&概率&&线段树)

    题目链接: http://codeforces.com/contest/712/problem/E 题目大意: 一条直线上有n格,在第i格有pi的可能性向右走一格,1-pi的可能性向左走一格,有2中操 ...

  8. CF712E Memory and Casinos

    设\(f[i]\)为从\(i\)到\(r+1\)且不走出区间的概率 \(f[i]=p[i]f[i+1]+(1-p[i])f[i-1]\) \(f[i]-f[i-1]=p[i](f[i+1]-f[i-1 ...

  9. [题解]数学期望_luogu_P1850_换教室

    数学期望dp,题面第一次见很吓人,然而从CCF语翻译成人话就简单多了, 开始一般会想到用 f [ i ] [ j ]表示前 i 个课程申请 j 次的期望,然而其实会发现转移的时候还和上一次的情况有关( ...

随机推荐

  1. 深入 Laravel 内核之IOC容器

    升级工厂前的准备工作 无规矩不成方圆,随着越来越多的行为出现,我们需要需要定下一些规范. 为了约束每一个行为的规范,需要定义一个行为接口: interface BehaviorInterface { ...

  2. VoIP语音处理流程和知识点梳理

    做音频软件开发10+年,包括语音通信.语音识别.音乐播放等,大部分时间在做语音通信.做语音通信中又大部分时间在做VoIP语音处理.语音通信是全双工的,既要把自己的语音发送出去让对方听到,又要接收对方的 ...

  3. 论文翻译:2020_RESIDUAL ACOUSTIC ECHO SUPPRESSION BASED ON EFFICIENT MULTI-TASK CONVOLUTIONAL NEURAL NETWORK

    论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了 ...

  4. java 8 - java 17 升级指北

    2014年发布的java SE 8和2017年发布的java EE 8,至今还是使用最广泛的java版本,大部分java开发者对于java 8之后的升级总是敬而远之,这跟java 9以后的破坏性升级和 ...

  5. 51 Nod 1091 线段的重叠 (贪心算法)

    原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1091 思路分析:通过读题不难发现这是一道涉及贪心算法的题,刚 ...

  6. 性能优化-使用双buffer实现无锁队列

    借助本文,实现一种在"读多写一"场景下的无锁实现方式 在我们的工作中,多线程编程是一件太稀松平常的事.在多线程环境下操作一个变量或者一块缓存,如果不对其操作加以限制,轻则变量值或者 ...

  7. vivo推送平台架构演进

    本文根据Li Qingxin老师在"2021 vivo开发者大会"现场演讲内容整理而成.公众号回复[2021VDC]获取互联网技术分会场议题相关资料. 一.vivo推送平台介绍 1 ...

  8. linux base脚本编写-自动领取微信红包

    bash脚本编写 语法 变量 定义: your_name = "ABC" 使用: echo $your_name 只读变量 a = "123" readonly ...

  9. Mybatis 学习记录

    1.先放上mybatis官网地址: https://mybatis.org/mybatis-3/zh/index.html 2.mybatis源码和有关包下载地址(GitHub): https://g ...

  10. 【解决了一个小问题】golang的go.mod中出现版本错误

    代码中的这一句使用prometheus2.28.0版本的代码: import "github.com/prometheus/prometheus/prompb" 我把require ...