Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

这一章主要讨论的是, 观测得到的数据(而非随机实验)在什么条件下可以视为是随机试验.

outcome predictors: 一些会导致\(Y\)发生的诱因

3.1

  1. 我们所考虑的\(A\)和实验中实际的采取的手段\(A\)是相一致的.

  2. 采取何种手段\(A\)仅仅与\(L\)有关(这里考虑, \(L, A, Y\)三个元素).

  3. \(\mathrm{Pr}(A|L) > 0\), 即正定性.

下面是一点一点的分析这三个点的重要性.

3.2 Exchangeability

这个对应的是第二点, 即我们要探究是否\(A\)仅仅与\(L\)有关, 从而有可交换性:

\[Y^a \amalg A |L.
\]

一旦遇到上面的情况, 往往就没有上述可交换性的保证了.

3.3 Positivity

设想\(L\)代表的是一个人是否吸烟, 倘若一个医生仅仅给不吸烟的人进行心脏迁移手术, 即

\[\mathrm{Pr}[A=1|L=1] = 0,
\]

则我们就完全丢失了这部分信息, 自然也没办法计算casual effect, 因为

\[\mathrm{Pr}[Y|A=1, L=1]
\]

压根没有定义.

3.4 Consistency

一致性分类预期结果的一致性, 以及结果和观测数据的一致性

First

现在假设\(A \in \{0, 1\}\), 即代表是否进行心脏移植手术, 但是在实际中, \(A\)并非如此纯粹的0, 1.

实际上, 取决于器材, 外科医生的差别会衍生出不同版本的\(A\).

当然了, 这么讨论下去只会导致不可知论, 我们可以在某种程度上假设, 不过对\(A\)的描述越细致, 即越细分, 最后的结论也会更加精准.

Second

这个一致性, 用公式就是

\[Y^a = Y, A=a,
\]

这个很重要, 因为我们在计算causal effect的时候有这么一步

\[\mathrm{Pr}[Y|A=a, L] = \mathrm{Pr}[Y^a|A=a, L].
\]

这个一致性, 个人的理解是, 我们所观察的\(A=a\)有很多版本, 可能与我们所希望的\(Y^a\)并不一致, 导致\(Y^a \not = Y\).

这里有一个微妙的东西, 实在是不知道如何描述了.

Fine Point

3.1 Identifiability of causal effects

指, 倘若不是随机实验, 我们需要一些额外的假设来得以计算causal effect.

3.2 Crossover randomized experiments

p32

这个讨论的是在不同的时间点\(t=0, t=1\).

3.3 Possible worlds

p35

3.4 Attributable fraction

p38

Technical Point

3.1 Positivity for standardization and IP weighting

p32

上一章讲了利用standardization 和 IP weighting 在条件可交换的假定下, 我们可以计算causal effect.

但是, 实际上这同时是需要positivity的假定的.

standardization:

\[\sum_l \mathbb{E} [Y|A=a, L=l] \mathrm{Pr} [L=l],
\]

这个式子需要\(\mathbb{E}[Y|A=a, L=l]\), 但是这个在某些\(P(A=a|L=l)=0\)的情况下是没有定义的.

另一方面, IP weighting

\[\mathbb{E} [\frac{I(A=a)Y}{f(A|L)}] = \mathrm{Pr}[L \in Q(a)]\sum_{l} \mathbb{E} [Y|A=a, L=l, L\in Q(a)] \mathrm{Pr} [L=l|L \in Q(a)],
\]

其中\(Q(a) = \{l; \mathrm{Pr} (A=a|L=l)>0\}\).

相当于, 认为地目标的集合缩小了.

里头还说, 上述的与

\[\mathbb{E} [\frac{I(A=a)Y}{f(a|L)}]
\]

不同, 而且说后者是undefined的, 可是后决定后者才是等价于上面所说的啊.

不过我倒是觉得无所谓的, 毕竟我们应该关心我们所关心的, 限定在\(f(a|L)\not = 0\)才是合适的区域.

3.2 Cheating consistency

p40

Chapter 3 Observational Studies的更多相关文章

  1. descriptive statistics|inferential statistics|Observational Studies| Designed Experiments

    descriptive statistics:组织和总结信息,为自身(可以是population也可以是sample)审视和探索, inferential statistics.从sample中推论p ...

  2. Weighted Effect Coding: Dummy coding when size matters

    If your regression model contains a categorical predictor variable, you commonly test the significan ...

  3. hbase官方文档(转)

    FROM:http://www.just4e.com/hbase.html Apache HBase™ 参考指南  HBase 官方文档中文版 Copyright © 2012 Apache Soft ...

  4. HBase官方文档

    HBase官方文档 目录 序 1. 入门 1.1. 介绍 1.2. 快速开始 2. Apache HBase (TM)配置 2.1. 基础条件 2.2. HBase 运行模式: 独立和分布式 2.3. ...

  5. 【统计】Causal Inference

    [统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...

  6. Propensity Scores

    目录 基本的概念 重要的结果 应用 Propensity Score Matching Stratification on the Propensity Score Inverse Probabili ...

  7. R数据分析:样本量计算的底层逻辑与实操,pwr包

    样本量问题真的是好多人的老大难,是很多同学科研入门第一个拦路虎,今天给本科同学改大创标书又遇到这个问题,我想想不止是本科生对这个问题不会,很多同学从上研究生到最后脱离科研估计也没能把这个问题弄得很明白 ...

  8. Modern C++ CHAPTER 2(读书笔记)

    CHAPTER 2 Recipe 2-1. Initializing Variables Recipe 2-2. Initializing Objects with Initializer Lists ...

  9. Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- ApiWrapper

    前面两片文章讲解了通过AIDL和Messenger两种方式实现Android IPC.而本文所讲的并不是第三种IPC方式,而是对前面两种方式进行封装,这样我们就不用直接把Aidl文件,java文件拷贝 ...

随机推荐

  1. 日常Java 2021/9/29

    StringBuffer方法 public StringBuffer append(String s) 将指定的字符串追加到此字符序列. public StringBuffer reverse() 将 ...

  2. 前端页面存放token

    //本地缓存,记录token function set(type, value) { localStorage.setItem(type, value); } function get(type) { ...

  3. 我在项目中是这样配置Vue的

    启用压缩,让页面加载更快 在我们开发的时候,为了方便调试,我们需要使用源码进行调试,但在生产环境,我们追求的更多的是加载更快,体验更好,这时候我们会将代码中的空格注释去掉,对代码进行混淆压缩,只为了让 ...

  4. 100个Shell脚本——【脚本5】数字求和

    [脚本5]数字求和 编写shell脚本,要求输入一个数字,然后计算出从1到输入数字的和,要求,如果输入的数字小于1,则重新输入,直到输入正确的数字为止,示例: 一.脚本 #!/bin/bash whi ...

  5. 随录、EJB和JTA

    说道JTA(Java Transction Api),即事务的一种. 事务:说白了就是一组原子操作,是为了保证数据的安全性. 它,分为三类:JDBC事务,JTA事务,还有容器事务. JDBC是由Con ...

  6. Linux:$?,$n,$#,$0

    $? 获取执行上一个指令的返回值(0为成功,非零为失败) $n 获取当前执行的shell脚本的第n个参数值,n=1...9,当n=0的时表示脚本的文件名,如果n大于9,大括号括起来${10} $# 获 ...

  7. MyBatis一对多映射简单查询案例(嵌套Mapper映射文件中的sql语句)

    一.案例描述 书本类别表和书本信息表,查询书本类别表中的某一记录,连带查询出所有该类别书本的信息. 二.数据库表格 书本类别表(booktypeid,booktypename) 书本信息表(booki ...

  8. 【JAVA今法修真】 第一章 今法有万象 百家欲争鸣

    大家好,我是南橘,因为这段时间很忙,忙着家里的事情,忙着工作的事情,忙着考试的事情,很多时候没有那么多经历去写新的东西,同时,也是看了网上一些比较新颖的文章输出方式,自己也就在想,我是不是也可以这样写 ...

  9. 使用frp进行内网穿透,实现ssh远程访问Linux服务器

    搭建一个完整的frp服务链需要: VPS一台(也可以是具有公网IP的实体机) 访问目标设备(就是你最终要访问的设备) 简单的Linux基础(如果基于Linux配置的话) 我这里使用了腾讯云服务器作为服 ...

  10. collection库更新1.4.0版本

    collection库更新1.4.0版本 collection库一直在使用中,周末集合github上的反馈以及contributor的修改,更新了1.4.0版本. 这个版本做了几个事情: 增加了三种类 ...