题意:

给出一个 \(n \times m\) 的矩阵,需对其进行黑白染色,使得以下条件成立:

  • 存在区间 \([l,r]\)(\(1\leq l\leq r\leq n\)),使得第 \(l,l+1,\dots,r\) 行恰有 \(2\) 个格子染成黑色,其余行所有格子均为白色。
  • 设第 \(i\) 行染黑的两个格子所在的列为 \(a_i,b_i(a_i\lt b_i)\),那么存在 \(l \leq t \leq r\),使得 \(a_l\geq a_{l+1}\geq a_{l+2}\geq\dots\geq a_t\leq a_{t+1}\leq a_{t+2}\leq\dots\leq a_r\),\(b_l\geq b_{l+1}\geq b_{l+2}\geq\dots\geq b_t\geq b_{t+1}\leq b_{t+2}\leq\dots\leq b_r\)。

    \(n,m \in [1,2000]\)

    答案对 \(10^9+7\) 取模。

很显然可以分上部分和下部分考虑,这里考虑上半部分。

设 \(dp_{i,j}\) 表示填好了 \(i\) 行,第 \(i\) 行的“宽度”(\(b_i-a_i+1\))为 \(j\)。

那么我们枚举上一行的宽度 \(k\),即 \(dp_{i,j}=\sum\limits_{k=2}^jdp_{i-1,k}\times(j-k+1)\)。

前缀和优化可以搞到 \(n^2\)。

然后我们考虑计算答案。

我们枚举上文中提到的 \(t\) 的位置,以及第 \(t\) 行的“宽度” \(w\),注意可能有多个 \(t\) 满足条件,这里我们枚举的是最下方的 \(t\),否则可能会重复计算。

这部分对答案的贡献为 \(f(t,w)=(\sum\limits_{i=1}^tdp_{i,w})\times(1+\sum\limits_{k=1}^{n-i}\sum\limits_{l=2}^{w-1}dp_{k,l}\times(w-l+1))\)

稍微解释一下这个式子。

前面的括号是填好上半部分的方案数,枚举行数求个和即可。

后面的括号的填好下半部分的方案数。第 \(t+1\) 行的宽度必然小于 \(w\),否则 \(t+1\) 也满足条件,我们枚举就不是“最下方的 \(t\)”了。

当然 \(t+1\) 行也可以不染色,贡献为 \(1\)。

预处理三个前缀和就可以 \(\mathcal O(1)\) 求出 \(f(t,w)\)。

最后 \(ans=\sum\limits_{t=1}^n\sum\limits_{w=2}^mf(t,w)\times(m-w+1)\)

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
typedef long long ll;
const ll MOD=1e9+7;
ll n,m,dp[2005][2005],s1[2005][2005],s2[2005][2005],s[2005][2005],_s[2005][2005],__s[2005][2005];
int main(){
scanf("%d%d",&n,&m);
for(int i=2;i<=m;i++) dp[1][i]=1;
for(int j=2;j<=m;j++){
s1[1][j]=(s1[1][j-1]+dp[1][j])%MOD;
s2[1][j]=(s2[1][j-1]+dp[1][j]*j%MOD)%MOD;
}
for(int i=2;i<=n;i++){
for(int j=2;j<=m;j++){
dp[i][j]=(-s2[i-1][j]+s1[i-1][j]*(j+1)%MOD+MOD)%MOD;
// printf("%d %d %lld\n",i,j,dp[i][j]);
}
for(int j=2;j<=m;j++){
s1[i][j]=(s1[i][j-1]+dp[i][j])%MOD;
s2[i][j]=(s2[i][j-1]+dp[i][j]*j%MOD)%MOD;
}
}
ll ans=0;
for(int i=1;i<=n;i++) for(int j=2;j<=m;j++) s[i][j]=(s[i-1][j]+dp[i][j])%MOD;
for(int i=1;i<=n;i++) for(int j=2;j<=m;j++) _s[i][j]=(_s[i][j-1]+s[i][j])%MOD;
for(int i=1;i<=n;i++) for(int j=2;j<=m;j++) __s[i][j]=(__s[i][j-1]+s[i][j]*j%MOD)%MOD;
for(int i=1;i<=n;i++) for(int j=2;j<=m;j++){
ans=(ans+s[i][j]*(_s[n-i][j-1]*(j+1)%MOD-__s[n-i][j-1]+MOD+1)%MOD*(m-j+1)%MOD)%MOD;
// printf("%d %d %lld\n",i,j,s[i][j]*(_s[n-i][j-1]*(j+1)%MOD-__s[n-i][j-1]+MOD+1)%MOD*(m-j+1)%MOD);
}
printf("%lld\n",ans);
return 0;
}
/*
dp[i][j]=\sum dp[i-1][k]*(j-k+1)
\sum s[x][k]*(j-k+1)
*/

Codeforces 295D - Greg and Caves(dp)的更多相关文章

  1. CodeForces - 710E Generate a String (dp)

    题意:构造一个由a组成的串,如果插入或删除一个a,花费时间x,如果使当前串长度加倍,花费时间y,问要构造一个长度为n的串,最少花费多长时间. 分析:dp[i]---构造长度为i的串需要花费的最短时间. ...

  2. [CodeForces - 296D]Greg and Graph(floyd)

    Description 题意:给定一个有向图,一共有N个点,给邻接矩阵.依次去掉N个节点,每一次去掉一个节点的同时,将其直接与当前节点相连的边和当前节点连出的边都需要去除,输出N个数,表示去掉当前节点 ...

  3. Educational Codeforces Round 51 D. Bicolorings(dp)

    https://codeforces.com/contest/1051/problem/D 题意 一个2*n的矩阵,你可以用黑白格子去填充他,求联通块数目等于k的方案数,答案%998244353. 思 ...

  4. Codeforces 536D - Tavas in Kansas(dp)

    Codeforces 题目传送门 & 洛谷题目传送门 其实这题本该 2019 年 12 月就 AC 的(详情请见 ycx 发此题题解的时间),然鹅鸽到了现在-- 首先以 \(s,t\) 分别为 ...

  5. Codeforces 467C George and Job(DP)

    题目 Source http://codeforces.com/contest/467/problem/C Description The new ITone 6 has been released ...

  6. Codeforces A ACM (ACronym Maker) (dp)

    http://codeforces.com/gym/100650 概要:给出一个缩写,和一些单词,从单词中按顺序选一些字母作为缩写,问方案数. 限制:某些单词要忽略,每个单词至少要选一个字母. dp[ ...

  7. codeforces 813 D. Two Melodies(dp)

    题目链接:http://codeforces.com/contest/813/problem/D 题意:求两个不相交的子集长度之和最大是多少,能放入同一子集的条件是首先顺序不能变,然后每一个相邻的要么 ...

  8. codeforces 762 D. Maximum path(dp)

    题目链接:http://codeforces.com/problemset/problem/762/D 题意:给出一个3*n的矩阵然后问从左上角到右下角最大权值是多少,而且每一个点可以走上下左右,但是 ...

  9. CodeForces - 446A DZY Loves Sequences(dp)

    题意:给定一个序列a,求最长的连续子序列b的长度,在至多修改b内一个数字(可修改为任何数字)的条件下,使得b严格递增. 分析: 1.因为至多修改一个数字,假设修改a[i], 2.若能使a[i] < ...

随机推荐

  1. SpringMVC、Spring、MyBatis整合(IDEA版)

    1 环境准备 1.1 软件架构 JDK 1.8 Spring 4.x Mybatis 3.x Maven 3.x MySQL 5.7 1.2 创建数据库 创建数据库,数据库名ssm-demo,字符集u ...

  2. TortoiseGit使用

    TortoiseGit 前言: 其实作为一名学生,还未接触过企业级开发项目,基本都是一个人在本地敲代码,对于项目管理工具使用的并不多,最常用的命令也就是git clone了,hhh: 前些日子了解了一 ...

  3. 欧姆龙plc通讯协议格式

    欧姆龙CPM1A型plc与上位计算机通信的顺序是上位机先发出命令信息给PLC,PLC返回响应信息给上位 机.每次通信发送/接受的一组数据称为一"帧".帧由少于131个字符的数据构成 ...

  4. UltraSoft - Beta - 设计与计划

    在DDL Killer的Alpha发布版本一周后,我们积累了一定的用户数量和用户反馈,同时也着手准备Beta阶段的继续开发,在正式开始迭代前,先对我们的Beta阶段的需求做一个统计和预估,一是保证工作 ...

  5. 【二食堂】Beta - 设计和计划

    Beta设计和计划 需求再分析 根据助教.老师.用户以及各个团队PM的反馈意见,我们的项目目前有以下问题: 功能不完整 实用价值不高 两方面的缺陷,所以在Beta阶段,我们工作的中心还是完成项目规划中 ...

  6. Allegro如何测量距离,测距工具的使用

    http://www.allegro-skill.com/thread-2480-1-1.html

  7. Python3 TypeError: initial_value must be str or None, not bytes

    response.read() returns an instance of bytes while StringIO is an in-memory stream for text only. Us ...

  8. git安装心得

    每天码代码打卡任务,老师需要我们提交链接,这就需要我们把自己打的代码文件上传到GitHub上来,以此获得链接. 自己是一个新人,安装git也是什么都不懂(跟着网上的教程也总是能出错) 安装正常操作:h ...

  9. Firefox火狐浏览器提示您的链接并不安全(解决办法)

    火狐浏览器不管访问什么,一直提示连接不安全 解决办法: 1.在Firefox地址栏输入"about:config",回车,进入如下图页面 点击"我了解此风险" ...

  10. PTA 7-1 公路村村通 (30分)

    PTA 7-1 公路村村通 (30分) 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本. 输入格式: 输入数据包括城镇数目正整数N ...