题面传送门

首先我们需注意到这样一个性质:那就是对于任何一种状态,将其变为全 \(0\) 所用的最小步数的方案是唯一的——考虑编号为 \(n\) 的灯,显然如果它原本是暗着的就不用管它了,如果它是亮着的那就只能通过拉它自己使其变暗,这需要 \(1\) 步操作,并会使所有 \(i\mid n\) 的灯 \(i\) 的状态取反;接下来依次考虑编号 \(n-1\),如果它在处理完编号为 \(n\) 的灯后还是亮着的,那也只能通过拉它本身的开关将其关掉;接下来再考虑编号为 \(n-1,n-2,\dots\) 的灯,以此类推。

其次我们还可以注意到,记 \(F(a[1...n])\) 表示对于序列 \(a_1,a_2,\dots a_n\) 需要按哪几个灯才能关掉所有灯,如果我们按下了一盏编号 \(\notin F(a[1...n])\) 的灯,那么我们还需要 \(|F(a[1...n])|+1\) 次操作才能才能关掉所有灯;同理如果我们按下了一盏编号 \(\in F(a[1...n])\) 的灯,那么我们还需要 \(|F(a[1...n])|-1\) 次操作才能才能关掉所有灯。

上述性质告诉我们,\(F(a[1...n])\) 具体是什么并不重要,我们只用关心其大小即可。这样就可以 DP 了。设 \(dp_i\) 表示从 \(|F(a[1...n])|=i\) 的状态变成 \(|F(a[1...n])|=i-1\) 的状态期望需要多少步。那么有状态转移方程 \(dp_i=\dfrac{n-i}{n}(dp_{i+1}+dp_i+1)+\dfrac{i}{n}\),稍微变个形即可得到 \(dp_i=\dfrac{n+(n-i)\times dp_{i+1}}{i}\),线性递推求一下即可,最终答案即为 \(k+dp_{k+1}+dp_{k+2}+\dots+dp_x\),其中 \(x\) 为初始的 \(|F(a[1...n])|\)。最前面那个 \(k\) 很容易被忽略,一定要格外注意。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
const int MOD=1e5+3;
int n,k,a[MAXN+5],inv[MAXN+5],dp[MAXN+5],cnt=0;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=n;i;i--) if(a[i]){
cnt++;
for(int j=1;j*j<=i;j++) if(i%j==0){
a[j]^=1;if(j!=i/j) a[i/j]^=1;
}
}
inv[1]=1;
for(int i=2;i<=n;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=n;i;i--) dp[i]=1ll*(n+1ll*dp[i+1]*(n-i)%MOD)*inv[i]%MOD;
int ans=0;
if(cnt>=k){
for(int i=cnt;i>k;i--) ans=(ans+dp[i])%MOD;
ans=(ans+k)%MOD;
} else ans=cnt;
for(int i=1;i<=n;i++) ans=1ll*ans*i%MOD;printf("%d\n",ans);
return 0;
}

洛谷 P3750 - [六省联考2017]分手是祝愿(期望 dp)的更多相关文章

  1. 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)

    传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...

  2. 洛谷 P3750 [六省联考2017]分手是祝愿

    传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include&l ...

  3. [bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开. \(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成, ...

  4. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  5. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  6. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  7. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

  8. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  9. luogu P3750 [六省联考2017]分手是祝愿

    luogu loj 可以发现在最优策略中,每种操作最多只会做一次,并且操作的先后顺序并不会影响答案,所以考虑从后往前扫,碰到一个\(1\)就对这个位置\(i\)进行操作,这样的操作一定是最优策略.记最 ...

随机推荐

  1. F1西班牙大奖赛-加泰罗尼亚赛道地图及简介

    背景 银石双赛结束,第二轮三连赛的最后一场将转战西班牙,第50届F1西班牙大奖赛将于本周末(正赛2020-08-15)在加泰罗尼亚赛道上演. 作为近年来F1承办季前测试的赛道,所有人都对这里再熟悉不过 ...

  2. 这12种场景Spring事务会失效!

    前言 对于从事java开发工作的同学来说,spring的事务肯定再熟悉不过了.在某些业务场景下,如果一个请求中,需要同时写入多张表的数据.为了保证操作的原子性 (要么同时成功,要么同时失败),避免数据 ...

  3. 离线状态迁移Anaconda虚拟环境

    离线状态迁移Anaconda虚拟环境 同样是项目需求,需要布署的服务器上的Anaconda安装到了普通账户下 而后续所有的内容都需要通过root账户进行操作,而服务器已经布署,联网比较麻烦 本文提出, ...

  4. 6月8日 Scrum Meeting

    日期:2021年6月8日 会议主要内容概述: 确定6.9日下午两点到五点集中对接 初步确定主题配色和echarts默认图表颜色 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作 ...

  5. OO第三单元JML总结

    目录 目录一.JML语言的理论基础二.应用工具链三.部署SMT Solver四.部署JMLUnitNG/JMLUnit五.三次作业分析第一次作业第二次作业第三次作业六.总结与心得体会 一.JML语言的 ...

  6. Redis核心原理与实践--Redis启动过程源码分析

    Redis服务器负责接收处理用户请求,为用户提供服务. Redis服务器的启动命令格式如下: redis-server [ configfile ] [ options ] configfile参数指 ...

  7. 《基于SIRS模型的行人过街违章传播研究》

    My Focus: 行人违章过街 这一行为的传播与控制 Behavior definition in this paper: 人在生活中表现出来的生活态度及具体的生活方式 Title: Researc ...

  8. Envoy实现.NET架构的网关(四)集成IdentityServer4实现OAuth2认证

    什么是OAuth2认证 简单说,OAuth 就是一种授权机制.数据的所有者告诉系统,同意授权第三方应用进入系统,获取这些数据.系统从而产生一个短期的进入令牌(token),用来代替密码,供第三方应用使 ...

  9. hdu 2191 珍惜现在,感恩生活(多重背包)

    题意: 有N元经费,M种大米,每种大米有单袋价格p元,单袋重量h,以及对应袋数c. 问最多可以买多重的大米. 思路: 经典多重背包,用二进制的方法. 看代码 代码: struct node{ int ...

  10. Python里字符串Format时的一个易错“点”

    这是一篇很小的笔记,原因是我做学习通的时候见到了这个题: 当时看了一会儿发现没有符合自己想法的答案,然后就脑袋一热选了C,结果当然是错了... 看了一眼这个format的字符串对象,发现有个 {:7. ...