题面传送门

首先我们需注意到这样一个性质:那就是对于任何一种状态,将其变为全 \(0\) 所用的最小步数的方案是唯一的——考虑编号为 \(n\) 的灯,显然如果它原本是暗着的就不用管它了,如果它是亮着的那就只能通过拉它自己使其变暗,这需要 \(1\) 步操作,并会使所有 \(i\mid n\) 的灯 \(i\) 的状态取反;接下来依次考虑编号 \(n-1\),如果它在处理完编号为 \(n\) 的灯后还是亮着的,那也只能通过拉它本身的开关将其关掉;接下来再考虑编号为 \(n-1,n-2,\dots\) 的灯,以此类推。

其次我们还可以注意到,记 \(F(a[1...n])\) 表示对于序列 \(a_1,a_2,\dots a_n\) 需要按哪几个灯才能关掉所有灯,如果我们按下了一盏编号 \(\notin F(a[1...n])\) 的灯,那么我们还需要 \(|F(a[1...n])|+1\) 次操作才能才能关掉所有灯;同理如果我们按下了一盏编号 \(\in F(a[1...n])\) 的灯,那么我们还需要 \(|F(a[1...n])|-1\) 次操作才能才能关掉所有灯。

上述性质告诉我们,\(F(a[1...n])\) 具体是什么并不重要,我们只用关心其大小即可。这样就可以 DP 了。设 \(dp_i\) 表示从 \(|F(a[1...n])|=i\) 的状态变成 \(|F(a[1...n])|=i-1\) 的状态期望需要多少步。那么有状态转移方程 \(dp_i=\dfrac{n-i}{n}(dp_{i+1}+dp_i+1)+\dfrac{i}{n}\),稍微变个形即可得到 \(dp_i=\dfrac{n+(n-i)\times dp_{i+1}}{i}\),线性递推求一下即可,最终答案即为 \(k+dp_{k+1}+dp_{k+2}+\dots+dp_x\),其中 \(x\) 为初始的 \(|F(a[1...n])|\)。最前面那个 \(k\) 很容易被忽略,一定要格外注意。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=1e5;
const int MOD=1e5+3;
int n,k,a[MAXN+5],inv[MAXN+5],dp[MAXN+5],cnt=0;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=n;i;i--) if(a[i]){
cnt++;
for(int j=1;j*j<=i;j++) if(i%j==0){
a[j]^=1;if(j!=i/j) a[i/j]^=1;
}
}
inv[1]=1;
for(int i=2;i<=n;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=n;i;i--) dp[i]=1ll*(n+1ll*dp[i+1]*(n-i)%MOD)*inv[i]%MOD;
int ans=0;
if(cnt>=k){
for(int i=cnt;i>k;i--) ans=(ans+dp[i])%MOD;
ans=(ans+k)%MOD;
} else ans=cnt;
for(int i=1;i<=n;i++) ans=1ll*ans*i%MOD;printf("%d\n",ans);
return 0;
}

洛谷 P3750 - [六省联考2017]分手是祝愿(期望 dp)的更多相关文章

  1. 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)

    传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...

  2. 洛谷 P3750 [六省联考2017]分手是祝愿

    传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include&l ...

  3. [bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开. \(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成, ...

  4. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  5. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  6. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  7. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

  8. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  9. luogu P3750 [六省联考2017]分手是祝愿

    luogu loj 可以发现在最优策略中,每种操作最多只会做一次,并且操作的先后顺序并不会影响答案,所以考虑从后往前扫,碰到一个\(1\)就对这个位置\(i\)进行操作,这样的操作一定是最优策略.记最 ...

随机推荐

  1. 力扣 - 剑指 Offer 53 - I. 在排序数组中查找数字 I

    题目 剑指 Offer 53 - I. 在排序数组中查找数字 I 思路1 一般来说,首先想到的是使用一个变量,从头开始遍历整个数组,记录target数组出现的次数,但是这样的时间复杂度是O(n),还是 ...

  2. 【二食堂】Beta - Scrum Meeting 7

    Scrum Meeting 7 例会时间:5.19 18:30~18:50 进度情况 组员 当前进度 今日任务 李健 1. 文本区域的前后端对接完成,bug已经修复issue2. 自定义关系的添加与删 ...

  3. [对对子队]会议记录5.18(Scrum Meeting5)

    今天已完成的工作 何瑞 ​ 工作内容:搭建第8关 ​ 相关issue:搭建关卡7.8.9 ​ 相关签入:feat:初步搭建了Lv8 吴昭邦 ​ 工作内容:搭建第8关 ​ 相关issue:搭建关卡7.8 ...

  4. 状压dp学习笔记(紫例题集)

    P3451旅游景点 Tourist Attractions 这个代码其实不算是正规题解的(因为我蒟蒻)是在我们的hzoj上内存限制324MIB情况下过掉的,而且经过研究感觉不太能用滚动数组,所以那这个 ...

  5. Python课程笔记(二)

    1.格式化输出 print("%d %d %s" % (15, 3.14, 12.8)) 对比C语言 printf("%d,%d,%s",15, 3.14, 1 ...

  6. 痞子衡嵌入式:超级下载算法RT-UFL v1.0在Segger Ozone下的使用

    痞子衡主导的"学术"项目 <RT-UFL - 一个适用全平台i.MXRT的超级下载算法设计> v1.0 版发布近 4 个月了,部分客户已经在实际项目开发调试中用上了这个 ...

  7. spring cloud Alibaba --sentinel组件的使用

    sentinel组件 对于sentinel的前置知识这里就不多说了: 直接上代码: Release v1.8.1 · alibaba/Sentinel · GitHub  下载地址 springclo ...

  8. JS基础面试

    1. JS是高级语言弱类型语言 脚本语言 1.1高级语言我们写完的代码不能直接执行,要先经过js引擎翻译成0101这种机器语言才能执行 1.2 弱类型语言变量可以在前一行设置为一个数字,下一行修改为一 ...

  9. eclipse配置Tomcat和Tomcat出现无效端口解决办法

    一.eclipse配置Tomcat 1. 按图选择window-preferences 2在server处选择runtime environment . 3.点击右侧add,选择自己的Tomcat版本 ...

  10. openstack 后期维护(四)--- 删除僵尸卷

    前言: 在长时间使用openstack之后,删除虚机后,经常会有因这样那样的问题,导致卷处于僵尸状态,无法删除! 状态一: 虚机已近删除,然而卷却挂在到了 None上无法删除 解决办法: 1.# ci ...