(邹博ML)数学分析与概率论
机器学习入门
深度学习和机器学习?
深度学习在某种意义上可以认为是机器学习的一个分支,只是这个分支非常全面且重要,以至于可以单独作为一门学科来进行研究。
回忆知识

求解S.
对数函数的上升速度

我们使用Python简单写一段代码可以很容易获得结果。但是我们使用数学来分析:
令\(f(x)=log_ax\)
则:

那么我们需要考虑:
构造数列:

我们很容易推出:
根据前文,已经证明了数组\({a_n}\)单增有上界,因此,必有极限,记作e。

根据夹逼定理,函数
极限存在,为e.
导数
- 简单来说,导数就是曲线的斜率,是曲线变化快慢的反应
- 二阶导数是斜率变化快慢的反应,表征曲线凹凸行
- 二阶导数连续的曲线,往往称之为“光顺”的
- 根据
可以得到函数\(f(x)=lnx\)的导数,进而进一步通过换底公式,反函数求导等,得到其他初等函数的导数
常用函数的导数

应用1
已知函数\(f(x)=x^x,x>0\),
求f(x)的最小值
此处直接求导并不合适,我们可以取对数在求导。
\(N^{\frac{1}{log_2N}}\)=?
在计算机算法跳跃表Skip List的分析中,用到了该常数。
背景:跳表是支持增删改查的动态数据结构,能够达到与平衡二叉树、红黑树近似的效率,而实现代码简单
求解:

积分应用2
证明:
在算法复杂度分析中,任何一种关键字比较的排序算法时间复杂度为\(NlgN\),可由上式推出。
解:\(\ln N!=\sum_{i=1}^{N}\ln i\approx \int_{1}^{N}\ln xdx\)
我们采用分部积分法:

Taylor公式-Maclaurin公式

Taylor公式应用1
数值计算:初等函数值的计算(在原点展开)

在实践中,往往需要做一定程度的变换。
给定正实数x,计算\(e^x\)=?
一种可行的思路是求整数k和小数r,使得:
\(x= k\times \ln 2+2, |r|\le0.5\times \ln 2\)
从而:
\]
\]
\]
Taylor公式应用2
考察Gini系数的图像、熵、分类误差率三者之间的关系
将\(f(x)=-\ln x\)在x=1出一阶展开,忽略高阶无穷小,得到\(f^{'}(x)\approx1-x\)


具体细节在决策树中描述。
方向导数
如果函数z=f(x,y)在点P(x,y)是可微分的,那么,函数在该点沿任意方向L的方向导数都存在,且有:

其中,\(\varphi\)为x轴到方向L的转角。
梯度
设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,这对于每一个点P(x,y)\(\in\)D,向量:

为函数z=f(x,y)在点P的梯度,记作\(gradf(x,y)\)。
- 梯度的方向是函数在该点变化最快的方向。
- 梯度下降法
概率论
对概率论的认识
P(x)\(\in\)[0,1]
p=0,事件出现的概率为0\(\to\)事件不会发生吗?
我们希望概率为0,但是实际上定义域为连续的。比如投针到桌子上,我们可以认为针的尖端为0,这样理论上桌面被投中的概率为0,但是,实际上还是会被投中。当然,这是极限情况,我们可以基本无视。
若x为离散/连续变量,则p(x=\(x_0\))表示\(x_0\)发生的概率/概率密度。
累计分布函数
\(\Phi\)一定为单增函数
min(\(\Phi(x)\))=0,max(\(\Phi(x)\))=0。
将值域为[0,1]的某单增函数y=F(x)看成:X事件的累积概率函数(CDF)
- 若F(x)可导,则f(x)=F'(x)为某概率密度函数(PDF)。
古典概型
举例:将n个不同的球放入N(N\(\ge\)n)个盒子中,假设盒子容量无限,求事件A{每个盒子至多有一个球}的概率。
解:
基本事件总数:
- 第一个球,N种放法
- 第二个球,N种放法
- ......
- 共有:\(N^n\)种放法
每个盒子至多放1个球的事件数:
- 第一个球,N种放法
- 第二个球,N-1种放法
- ......
- 共有:N(N-1)(N-2)...(N-n+1)
\(P(A)=\frac{P_N^n}{N^n}\)
生日悖论
假定班内50人,假设一年365天,则至少有2人生日相同的概率是多少?

那么n=50,N=365。只需1-(每个人生日都不同)最终结果97%。
这和我们的经验出现偏差,告诉我们,我们的先验不一定正确。
装箱问题
将12件正品和3件次品随机装在3个箱子中,每箱子装5件,则每箱中恰有一件次品的概率是多少?
解:

组合数
装箱问题与组合数的关系

组合数的背后


最终结果就是信息论中的信息熵。
概率公式
条件概率:

全概率公式:

贝叶斯(Bayes)公式:

需要掌握各种分布
二项分布Bernoulli distribution
- 期望np,方差np(1-p)
- 离散的
泊松分布Poisson distribution
可以通过泰勒展开式获得泊松分布

期望方差均为\(\lambda\)
离散的
均匀分布
期望0.5(a+b),方差\((b-a)^2/12\)
连续的
指数分布
- 无记忆性
正态分布(高斯分布)


指数族
某一函数可以写作类似如下指数形式:

这个函数描述的分别可以称为指数族分布。例如Bernoulli分布、高斯分别、泊松分布,伯努利分布、Gamma分布等。
Bernoulli分布:


在推导过程中出现了logistic方程:

这也就是sigmoid函数,图像如下:

sigmoid函数的导数:

(邹博ML)数学分析与概率论的更多相关文章
- (邹博ML)矩阵和线性代数
主要内容 矩阵 特征值和特征向量 矩阵求导 矩阵 SVD的提法 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做对称方阵在任意矩阵上的推广. 假 ...
- (邹博ML)凸优化
目录 凸集的基本概念 凸函数的基本概念 凸优化的一般提法 凸集基本概念 思考两个不能式 两个正数的算术平均数大于等于几何平均数 给定可逆对称阵Q,对于任意向量x,y,有: 思考凸集和凸函数 在机器学习 ...
- (ML邹博)回归
目录 线性回归 高斯分布 最大似然估计 最小二乘法的本质 Logistic回归 工具 梯度下降算法 最大似然估计 线性回归 对于单个变量: y=ax+b 对于多个变量: 使用极大似然估计解释最小二乘法 ...
- Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http ...
- 怀念Galois
我的第一篇谈到具体学科的博客,还是献给我最钟爱的数学. 个人比较喜欢离散数学,并非因为曲高和寡,而是因为数学分析.概率论.拓扑学.泛函之类的高手实在太多.而离散数学更为抽象,抽象到抽象代数直接以抽象二 ...
- 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书
1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...
- 理解 LDA 主题模型
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...
- 通俗理解LDA主题模型
通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印 ...
- 通俗理解LDA主题模型(boss)
0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布. ...
随机推荐
- 一款免费的在线 Markdown 笔记,类似 typora 编辑体验
为什么要开发一款新的编辑器 自从我开始使用 Markdown,就爱上了这种标记语法,轻量.纯文本兼容是最大的优点,哪里都可以编辑,一开始是在 IDE 上直接编辑,后来笔记越来越多,需要上传图片,有云同 ...
- LNMP配置——Nginx配置 ——域名重定向
一.配置 #vi /usr/local/nginx/conf/vhost/test.com.conf 写入: server { listen 80; server_name test.com test ...
- C#开发BIMFACE系列35 服务端API之模型对比6:获取模型构建对比分类树
系列目录 [已更新最新开发文章,点击查看详细] BIMFACE平台提供了服务端"获取模型对比构件分类树"API.目录树返回结果以树状层级关系显示了增删改的构件信息,里面无法 ...
- Lzzy高级语言程序设计之while循环
public class Mq2 { public static void main(String[]args) { int b = 3; while (b < 7) { System.out. ...
- 【odoo14】第二十一章、性能优化
通过odoo框架,我们可以开发大型且复杂的应用.良好的性能是实现这一目标的基础.本章,我们将探讨如何提高应用性能.同时,我们也会讲解找出影响性能的因素. 本章包含以下内容: 记录集的预读取模式 将数据 ...
- P2089_烤鸡(JAVA语言)
题目背景 猪猪hanke得到了一只鸡 题目描述 猪猪Hanke特别喜欢吃烤鸡(本是同畜牲,相煎何太急!)Hanke吃鸡很特别,为什么特别呢?因为他有10种配料(芥末.孜然等),每种配料可以放1-3克, ...
- Redis入门到放弃系列-redis安装
Redis是什么? Redis is an open source (BSD licensed), in-memory data structure store, used as a database ...
- TypeError: Can't convert 'int' object to str implicitly Python常见错误
尝试连接非字符串值与字符串 想要字符串连接非字符串需要先进行强制转化 可以用str()函数 --------------------------------
- kong 结合 istio demo
- [状压DP]车II
车 I I 车II 车II 题目描述 有一个 n ∗ m n*m n∗m的棋盘 ( n . m ≤ 80 , n ∗ m ≤ 80 ) (n.m≤80,n*m≤80) (n.m≤80,n∗m≤80)要 ...