\(\mathcal{Description}\)

  Link.

  给定一棵 \(n\) 个点的树,求无序三元组 \((u,v,w)\) 的个数,满足其中任意两点树上距离相等。

  \(n\le10^5\)。

\(\mathcal{Solution}\)

  考虑如何计数。对于任意三元组 \((u,v,w)\),我们仅在其两两路径所进过的树上最高点对其统计一次。如图:

  对于三元组 \((4,6,7)\),我们仅希望在 \(1\) 处统计它的贡献。

  考虑 DP,记 \(d(u,v)\) 表示 \(u\) 到 \(v\) 的树上距离。令 \(f(u,i)\) 表示 \(u\) 子树内 \(v\) 的个数,满足 \(d(u,v)=i\);\(g(u,i)\) 表示 \(u\) 子树内无序二元组 \((p,q)\) 的个数,满足 \(d(p,\operatorname{lca}(p,q))=d(q,\operatorname{lca}(p,q))=d(\operatorname{lca}(p,q),u)+i\)。例如上图的 \(g(2,2)=1\),无序二元组 \((4,6)\) 满足条件。

  如此设计状态的意义在于,在 \(g(u,i)\) 的基础上,在 \(u\) 子树的外部接上一个满足 \(d(u,w)=i\) 的 \(w\) 就能构成三元组,并且三元组恰好在最高点 \(u\) 计数。

  暴力转移比较显然,发现状态的第二维的范围均为 \(u\) 向下的最长链长,所以用长链剖分优化,直接移动指针继承 \(\mathcal O(1)\) 继承长儿子信息,做到均摊 \(\mathcal O(n)\) 转移,故总复杂度 \(\mathcal O(n)\)。

\(\mathcal{Code}\)

#include <cstdio>

#define alloc( u ) \
( f[u] = cur, g[u] = ( cur += dep[u] << 1 ), cur += dep[u] << 1 ) typedef long long LL; const int MAXN = 1e5;
int n, ecnt, head[MAXN + 5];
int dep[MAXN + 5], son[MAXN + 5];
LL ans, *f[MAXN + 5], *g[MAXN + 5], pool[MAXN * 5], *cur = pool; struct Edge { int to, nxt; } graph[MAXN * 2 + 5]; inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
} inline void init ( const int u, const int fa ) {
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa ) {
init ( v, u );
if ( dep[v] > dep[son[u]] ) son[u] = v;
}
}
dep[u] = dep[son[u]] + 1;
} inline void solve ( const int u, const int fa ) {
if ( son[u] ) {
f[son[u]] = f[u] + 1, g[son[u]] = g[u] - 1;
solve ( son[u], u );
}
f[u][0] = 1, ans += g[u][0];
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa && v ^ son[u] ) {
alloc ( v ), solve ( v, u );
for ( int j = 0; j < dep[v]; ++ j ) {
if ( j ) ans += f[u][j - 1] * g[v][j];
ans += g[u][j + 1] * f[v][j];
}
for ( int j = 0; j < dep[v]; ++ j ) {
g[u][j + 1] += f[u][j + 1] * f[v][j];
if ( j ) g[u][j - 1] += g[v][j];
f[u][j + 1] += f[v][j];
}
}
}
} int main () {
scanf ( "%d", &n );
for ( int i = 1, u, v; i < n; ++ i ) {
scanf ( "%d %d", &u, &v );
link ( u, v ), link ( v, u );
}
init ( 1, 0 );
alloc ( 1 );
solve ( 1, 0 );
printf ( "%lld\n", ans );
return 0;
}

Solution -「POI 2014」「洛谷 P5904」HOT-Hotels 加强版的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. 洛谷P1120 小木棍 [数据加强版](搜索)

    洛谷P1120 小木棍 [数据加强版] 搜索+剪枝 [剪枝操作]:若某组拼接不成立,且此时 已拼接的长度为0 或 当前已拼接的长度与刚才枚举的长度之和为最终枚举的答案时,则可直接跳出循环.因为此时继续 ...

  3. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  4. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  5. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  6. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  7. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

  8. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

  9. 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】

    题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...

随机推荐

  1. 为 MySQL 的 root 用户设置一个密码。

    shell> mysqladmin --user=root password somepasswordshell> mysqladmin --user=root --password re ...

  2. 关于Jmeter线程数Ramp-Up.循环次数的理解和实验数据

    1. 关于线程组参数 线程组:即一个线程组实例里面包括多个串行的请求或动作.一个线程组的从启动到结束的时间取决于你线程中的步骤数量. 线程数:即用户数,在Ramp-up时间内(包括循环),简单把线程数 ...

  3. leetcode 718. 最长重复子数组

    问题描述 给两个整数数组 A 和 B ,返回两个数组中公共的.长度最长的子数组的长度. 示例: 输入: A: [1,2,3,2,1] B: [3,2,1,4,7] 输出:3 解释: 长度最长的公共子数 ...

  4. unity3d之sokect通信

    using System.Collections; using System.Collections.Generic; using UnityEngine; using System; using S ...

  5. java抽象类案例

    1 package face_09; 2 /* 3 * 雇员示例: 4 * 需求:公司中程序员有姓名,工号,薪水,工作内容. 5 * 项目经理除了有姓名,工号,薪水,还有奖金,工作内容. 6 * 对给 ...

  6. ☕【Java深层系列】「并发编程系列」让我们一起探索一下CyclicBarrier的技术原理和源码分析

    CyclicBarrier和CountDownLatch CyclicBarrier和CountDownLatch 都位于java.util.concurrent这个包下,其工作原理的核心要点: Cy ...

  7. 【重构前端知识体系之HTML】HTML5给网页音频带来的变化

    [重构前端知识体系之HTML]HTML5给网页音频带来的变化 引言 音乐播放,相信大家都很熟悉,但是早在之前的音乐播放之前,你的浏览器会问你,是否下载flash插件.然而现在,估计一些年轻的开发者都不 ...

  8. nginx 和uwsgi的区别与作用

    在介绍nginx和uwsgi的区别和作用之前我们先介绍一下几个概念 1.WSGI WSGI的全称是Web Server Gateway Interface(Web服务器网关接口),它不是服务器.pyt ...

  9. k8s对接jenkins通用pipeline

    pipeline { agent any tools { //工具必须预先在jenkins中预配置 maven 'mvn' jdk 'jdk' } stages { stage('Env') { st ...

  10. 『无为则无心』Python基础 — 43、文件备份的实现

    目录 1.需求 2.步骤 3.代码实现 (1)接收用户输入目标文件名 (2)规划备份文件名 (3)备份文件写入数据 (4)思考 (5)完整编码 4.再来一个小练习 1.需求 用户输入当前目录下任意文件 ...