洛谷3628 APIO2010特别行动队(斜率优化)
考虑最普通的\(dp\)
\]
qwq
由于演算纸扔掉了
qwq
所以直接给出最后的柿子
设\(f[x]=dp[x]+a*sum[x]^2\)
\]
所以直接维护一个上凸壳就好了啦
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e6+1e2;
struct Point{
int x,y,num;
};
Point q[maxn];
int n,m;
int sum[maxn];
int val[maxn];
int a,b,c;
int head=1,tail=0;
int dp[maxn];
int chacheng(Point x,Point y)
{
return x.x*y.y-x.y*y.x;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=k.x-i.x;
x.y=k.y-i.y;
y.x=k.x-j.x;
y.y=k.y-j.y;
if(chacheng(x,y)>=0) return true;
return false;
}
void push(Point x)
{
while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while (tail>=head+1 && q[head+1].y-q[head].y>lim*(q[head+1].x-q[head].x)) head++;
}
signed main()
{
n=read();
a=read(),b=read(),c=read();
for (int i=1;i<=n;i++) val[i]=read();
for (int i=1;i<=n;i++) sum[i]=sum[i-1]+val[i];
push((Point){0,0,0});
for (int i=1;i<=n;i++)
{
pop(2*a*sum[i]+b);
int now = q[head].num;
dp[i]=dp[now]+a*(sum[i]-sum[now])*(sum[i]-sum[now])+b*(sum[i]-sum[now])+c;
push((Point){sum[i],dp[i]+a*sum[i]*sum[i],i});
}
cout<<dp[n]<<endl;
return 0;
}
洛谷3628 APIO2010特别行动队(斜率优化)的更多相关文章
- 洛谷P3628 [APIO2010]特别行动队 斜率优化
裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using nam ...
- 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...
- [洛谷P3628] [APIO2010]特别行动队
洛谷题目链接:[APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动 ...
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Description Input Output Sample Input 4 ...
- 洛谷 P3628 [APIO2010]特别行动队
题意简述 将n个士兵分为若干组,每组连续,编号为i的士兵战斗力为xi 若i~j士兵为一组,该组初始战斗力为\( s = \sum\limits_{k = i}^{j}xk \),实际战斗力\(a * ...
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
随机推荐
- Scan error on column index 1, name “created_at“: unsupported Scan, storing driver.Value type []uint8
使用gorm,出现以下报错 在连接数据库时加上: parseTime=True db, err = gorm.Open(utils.Db, fmt.Sprintf("%s:%s@(%s:%s ...
- 关于Ubuntu18.04上Python版本管理
时间: 2019-11-11 整理: pangyuaner 标题:树梅派上多版本python及pip安装使用管理指南 地址:https://blog.csdn.net/zbgjhy88/article ...
- 经典深度学习CNN总结 - LeNet、AlexNet、GoogLeNet、VGG、ResNet
参考了: https://www.cnblogs.com/52machinelearning/p/5821591.html https://blog.csdn.net/qq_24695385/arti ...
- JavaSE-Java基础面试题
重载与重写的区别 重载:本类中,方法名相同,参数列表不同,(参数类型.参数顺序.参数个数),返回值类型可以不同,访问修饰符可不同 重写:子类中,方法名相同,参数不能改,返回值类型一致或其子类,访问权限 ...
- 用C++实现的Eratosthenes筛法程序
运行示例 只输出素数总数的运行示例 PS H:\Read\num\x64\Release> .\esieve.exe Eratosthenes sieve: a method to find o ...
- 浅谈可持久化Trie与线段树的原理以及实现(带图)
浅谈可持久化Trie与线段树的原理以及实现 引言 当我们需要保存一个数据结构不同时间的每个版本,最朴素的方法就是每个时间都创建一个独立的数据结构,单独储存. 但是这种方法不仅每次复制新的数据结构需要时 ...
- vue 输入框禁止输入空格 ,只能输入数字,禁止输入数字
正则表达式: @input="form.userName = form.userName.replace(/\s+/g,'')" ( 禁止输入空格) @input=&q ...
- Spring系列之不同数据库异常如何抽象的?
前言 使用Spring-Jdbc的情况下,在有些场景中,我们需要根据数据库报的异常类型的不同,来编写我们的业务代码.比如说,我们有这样一段逻辑,如果我们新插入的记录,存在唯一约束冲突,就会返回给客户端 ...
- Python 高级特性(3)- 列表生成式
range() 函数 日常工作中,range() 应该非常熟悉了,它可以生成一个迭代对象,然后可以使用 list() 将它转成一个 list # 判断是不是迭代对象 print(isinstance( ...
- 推荐一款编程字体:Iosevka
最近发现一款很好用的编程字体:Iosevka.它是一款现代化的编程字体集合,除了等宽.oO0 iIl1明显区分等基本特性外,还有很多非常现代的特性,比如: 多种风格:有非常多的字形可供选择,衬线/非衬 ...