link

Solution

考虑一个不合法方案,它一定最后位置的逆序对数不为 \(0\),而且可以发现的是,存在对称方案使得最后逆序对数奇偶性不同,所以我们如果加上 \((-1)\)^{\sigma(P)} (即逆序对数奇偶性),那么两者就会抵消掉。

所以可以枚举一个点的最后位置,用状压 dp 解决。

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 998244353
#define MAXN 1005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> inline void chkmax (T &a,T b){a = max (a,b);}
template <typename T> inline void chkmin (T &a,T b){a = min (a,b);} int n,m,x[MAXN],C[MAXN],f[1 << 10]; int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
return res;
}
void Sub (int &a,int b){a = dec (a,b);}
void Add (int &a,int b){a = add (a,b);} signed main(){
read (m,n),C[0] = f[0] = 1;
for (Int i = 0;i < m;++ i) read (x[i]);
for (Int i = 1;i <= n;++ i) C[i] = mul (C[i - 1],mul (n - i + 1,qkpow (i,mod - 2)));
for (Int i = 0;i <= x[m - 1] + n;++ i)
for (Int S = 0;S < (1 << m);++ S)
for (Int j = 0;j < m;++ j)
if (!(S >> j & 1) && x[j] <= i && i <= x[j] + n)
f[S | (1 << j)] = (__builtin_parity(S >> j) ? dec (f[S | (1 << j)],mul (f[S],C[i - x[j]])) : add (f[S | (1 << j)],mul (f[S],C[i - x[j]])));
write (mul (f[(1 << m) - 1],qkpow (mod + 1 >> 1,n * m))),putchar ('\n');
return 0;
}

题解 ABC216H Random Robots的更多相关文章

  1. ABC216H - Random Robots(容斥,状压DP)

    题面 有 K K K 个机器人初始分别位于数轴上 x 1 , x 2 , . . . , x K x_1,x_2,...,x_{K} x1​,x2​,...,xK​ 的整点位置. 接下来会经历 N N ...

  2. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  3. LGV 引理

    (其实是贺的:https://www.luogu.com.cn/paste/whl2joo4) 目录 LGV 引理 不相交路径计数 例题 Luogu6657. [模板]LGV 引理 CF348D Tu ...

  4. LeetCode编程训练 - 折半查找(Binary Search)

    Binary Search基础 应用于已排序的数据查找其中特定值,是折半查找最常的应用场景.相比线性查找(Linear Search),其时间复杂度减少到O(lgn).算法基本框架如下: //704. ...

  5. 算法与数据结构基础 - 哈希表(Hash Table)

    Hash Table基础 哈希表(Hash Table)是常用的数据结构,其运用哈希函数(hash function)实现映射,内部使用开放定址.拉链法等方式解决哈希冲突,使得读写时间复杂度平均为O( ...

  6. 算法与数据结构基础 - 折半查找(Binary Search)

    Binary Search基础 应用于已排序的数据查找其中特定值,是折半查找最常的应用场景.相比线性查找(Linear Search),其时间复杂度减少到O(lgn).算法基本框架如下: //704. ...

  7. 【LeetCode】抽样 sampling(共4题)

    第一部分 水塘抽样 reservoir sampling 水塘抽样的原理:(应该开一篇新文章)pssss [382]Linked List Random Node (2018年11月15日,新算法) ...

  8. python习题 随机密码生成 + 连续质数计算

    随机密码生成 描述 补充编程模板中代码,完成如下功能:‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪ ...

  9. 【题解】CF24D Broken Robots(收敛性)

    [题解]CF24D Broken Robots http://codeforces.com/problemset/problem/24/D 解1(不会写,口胡的) 获得一个比较显然的转移式子 \(dp ...

随机推荐

  1. IDEA快捷键命令

    Ctrl+Alt+T   IDEl 抛异常快捷键ctrl +o  继承类时 继承方法快捷键Ctrl+Alt+左右方向键  回到上次光标停留的地方ALt +left/right  快速切换两个页面ctr ...

  2. centos7 查看端口占用情况

    2021-08-02 1. 查看端口占用情况 # 查看 8088 端口占用情况 lsof -i tcp:8088 # 若提示没有 lsof 命令, yum 安装一下 yum -y install ls ...

  3. Spring依赖注入的四种方式

    首先,我们需要定义一个Bean的class类: package framework.spring; import org.springframework.beans.BeansException; i ...

  4. Jenkins手动下载并安装插件

    最近遇到Jenkins插件无法自动安装的问题,在插件管理页面的[升级站点]使用镜像url也无法解决.于是决定手动下载并安装Jenkins插件,具体步骤如下. Step1:进入Jenkins官网的插件下 ...

  5. k8s 存活探针,滚动更新

    文章原文 存活探针 Kubelet使用liveness probe(存活探针)来确定何时重启容器.例如,当应用程序处于运行状态但无法做进一步操作,liveness探针将捕获到deadlock,重启处于 ...

  6. 《DotNet Web应用单文件部署系列》一、pubxml文件配置

    很多人想用DotNet开发软件赚点外快子补添家用,但心里总放不下心来,担心被人破解了.好消息是去年发布的DotNet 5支持单文件部署,不同于DotNet 3运行时将文件释放到临时文件夹内,DotNe ...

  7. Docker(23)- 注册 docker hub 的账号

    如果你还想从头学起 Docker,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1870863.html 前言 Docker Hub 是 ...

  8. tomcat快速发布备份脚本

    一.说明 我们每次在tomcat中发布新war包,总是要经历[备份-停机-上传-启动]这几个部分,其中上传的环节和网速有极大相关性,要是网速很慢,那么整个发布的时间就会很长. 如果我们不借助于自动化发 ...

  9. go相关

    mac 上build go  如果想要在centos上面执行 必须使用下面的方式 CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -a -o hello ...

  10. VB自制计算器

    使用visual basic编写. 绘制如下的按钮界面: 然后代码如下: Dim a, temp, ans As Integer Dim op As String Sub showans() Text ...