1.spark-shell 交互式编程

  (1)该系总共有多少学生;

    执行命令:

  var tests=sc.textFile("file:///home/hadoop/studata/chapter5-data1.txt")

  var par=tests.map(row=>row.split(",")(0))

  var distinct_par=par.distinct()

  distinct_par.count

    结果:

  (2)该系共开设来多少门课程;

  执行命令:

  var tests=sc.textFile("file:///home/hadoop/studata/chapter5-data1.txt")

  var par=tests.map(row=>row.split(",")(1))

  var distinct_par=par.distinct()

  distinct_par.count

    结果:

  (3)Tom 同学的总成绩平均分是多少;

    执行命令:

  var tests=sc.textFile("file:///home/hadoop/studata/chapter5-data1.txt")

  var pars=tests.filter(row=>row.split(",")(0)=="Tom")

  pars.foreach(println)

    结果:

  (4)求每名同学的选修的课程门数;

    执行命令:

    

  var tests=sc.textFile("file:///home/hadoop/studata/chapter5-data1.txt")

  var pars=tests.map(row=>(row.split(",")(0),row.split(",")(1)))

  pars.mapValues(x=>(x,1)).reduceByKey((x,y)=>("  ",x._2+y._2)).mapValues(x=>x._2).foreach(println)

    结果(此处仅为部分结果,结果共265项):

    

  (5)该系 DataBase 课程共有多少人选修;

    执行命令(结果最后一行):

      

  var tests=sc.textFile("file:///home/hadoop/studata/chapter5-data1.txt")

  var pars=tests.filter(row=>(row.split(",")(1)=="Database"))

  pars.count

 

 

  (6)各门课程的平均分是多少;

   执行命令:

   

  var tests=sc.textFile("file:///home/hadoop/studata/chapter5-data1.txt")

  var pars=tests.map(row=>(row.split(",")(1),row.split(",")(2).toInt))

  pars.mapValues(x=>(x,1)).reduceByKey((x,y)=>(x._1+y._1,x._2+y._2)).mapValues(x=>(x._1/x._2)).collect()
 

   结果:

   

  (7)使用累加器计算共有多少人选了 DataBase 这门课。

  执行命令:

  

  var tests=sc.textFile("file:///home/hadoop/studata/chapter5-data1.txt")

  var pars=tests.filter(row=>(row.split(",")(1)=="Database")).map(row=>(row.split(",")(1),1))

  var account=sc.longAccumulator("My Accumulator")
  
  pars.values.foreach(x=>account.add(x))
 

  

  结果:

  

2.编写独立应用程序实现数据去重

  对于两个输入文件 A 和 B,编写 Spark 独立应用程序,对两个文件进行合并,并剔除其 中重复的内容,得到一个新文件 C。下面是输入文件和输出文件的一个样例,供参考。 输入文件 A 的样例如下:

   20170101 x

   20170102 y

   20170103 x

20170104 y

20170105 z

20170106 z

  输入文件 B 的样例如下:

20170101 y

20170102 y

20170103 x

20170104 z

20170105 y

  根据输入的文件 A 和 B 合并得到的输出文件 C 的样例如下:

20170101 x

20170101 y

20170102 y

20170103 x

20170104 y

20170104 z

20170105 y

20170105 z

20170106 z

创建项目:

  remdup.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
object RemDup {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("RemDup")
val sc = new SparkContext(conf)
val A = sc.textFile("file:///home/hadoop/studata/A.txt")
val B = sc.textFile("file:///home/hadoop/studata/B.txt")
val C = A.union(B).distinct().sortBy(x => x,true)
C.foreach(println)
sc.stop()
}
}

  simple.sbt

name := "RemDup Project"
version := "1.0"
scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0"

  打包项目(sbt的安装请看Spark-寒假-实验3):

  

  运行jar包:

  

  运行结果:

  

3.编写独立应用程序实现求平均值问题

  创建项目流程同上:

  程序代码如下:

  average.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner
object Average {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Average")
val sc = new SparkContext(conf)
val Algorimm = sc.textFile("file:///home/hadoop/studata/Algorimm.txt")
val DataBase = sc.textFile("file:///home/hadoop/studata/DataBase.txt")
val Python = sc.textFile("file:///home/hadoop/studata/Python.txt")
val allGradeAverage = Algorimm.union(DataBase).union(Python)
val stuArrayKeyValue = allGradeAverage.map(x=>(x.split(" ")(0),x.split(" ")(1).toDouble)).mapValues(x=>(x,1))
val totalGrade = stuArrayKeyValue.reduceByKey((x,y) => (x._1+y._1,x._2+y._2))
val averageGrade = totalGrade.mapValues(x=>(x._1.toDouble/x._2.toDouble).formatted("%.2f")).foreach(println)
sc.stop()
}
}

  simple.sbt

name := "Average Project"
version := "1.0"
scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0"

  打包项目:

  

  运行jar包:

 

  运行结果:

  

Spark-寒假-实验4的更多相关文章

  1. Spark基础实验七

    今天在做实验七,最开始有许许多多多的错误,最后通过查找.问同学才知道是数据集的格式和存放位置的原因. 就在好不容易解决了上一个错误,下一个错误就立马而来,错误如下: 目前还未找到解决办法,spark实 ...

  2. 沉淀,再出发——在Hadoop集群的基础上搭建Spark

    在Hadoop集群的基础上搭建Spark 一.环境准备 在搭建Spark环境之前必须搭建Hadoop平台,尽管以前的一些博客上说在单机的环境下使用本地FS不用搭建Hadoop集群,可是在新版spark ...

  3. spark学习及环境配置

    http://dblab.xmu.edu.cn/blog/spark/ 厦大数据库实验室博客 总结.分享.收获 实验室主页 首页 大数据 数据库 数据挖掘 其他 子雨大数据之Spark入门教程  林子 ...

  4. [DE] How to learn Big Data

    打开一瞧:50G的文件! emptystacks jobstacks jobtickets stackrequests worker 大数据加数据分析,需要以python+scikit,sql作为基础 ...

  5. 通过案例对 spark streaming 透彻理解三板斧之一: spark streaming 另类实验

    本期内容 : spark streaming另类在线实验 瞬间理解spark streaming本质 一.  我们最开始将从Spark Streaming入手 为何从Spark Streaming切入 ...

  6. Spark Streaming和Flume-NG对接实验

    Spark Streaming是一个新的实时计算的利器,而且还在快速的发展.它将输入流切分成一个个的DStream转换为RDD,从而可以使用Spark来处理.它直接支持多种数据源:Kafka, Flu ...

  7. 在阿里云上搭建 Spark 实验平台

    在阿里云上搭建 Spark 实验平台 Hadoop2.7.3+Spark2.1.0 完全分布式环境 搭建全过程 [传统文化热爱者] 阿里云服务器搭建spark特别坑的地方 阿里云实现Hadoop+Sp ...

  8. 实验5 Spark SQL编程初级实践

    今天做实验[Spark SQL 编程初级实践],虽然网上有答案,但都是用scala语言写的,于是我用java语言重写实现一下. 1 .Spark SQL 基本操作将下列 JSON 格式数据复制到 Li ...

  9. 2019寒假训练营第三次作业part2 - 实验题

    热身题 服务器正在运转着,也不知道这个技术可不可用,万一服务器被弄崩了,那损失可不小. 所以, 决定在虚拟机上试验一下,不小心弄坏了也没关系.需要在的电脑上装上虚拟机和linux系统 安装虚拟机(可参 ...

  10. 1.Spark Streaming另类实验与 Spark Streaming本质解析

    1 Spark源码定制选择从Spark Streaming入手  我们从第一课就选择Spark子框架中的SparkStreaming. 那么,我们为什么要选择从SparkStreaming入手开始我们 ...

随机推荐

  1. AT1445 乱数生成 题解

    Description 有一个机器会等概率从 \(1\) 到 \(n\) 的正整数中选出一个整数.显然地,这个机器运行 \(3\) 次后会得到 \(3\) 个整数.求这 \(3\) 个整数的中位数是 ...

  2. CF1144A Diverse Strings 题解

    Content 我们定义一个字符串是合法的,当且仅当这个字符串是"连续排列"(按照字母表顺序排序).现在给出 \(n\) 个字符串 \(s_1,s_2,s_3,...,s_n\), ...

  3. java 多线程 线程池:多核CPU利用ExecutorService newWorkStealingPool; ForkJoinPool线程池 执行可拆分的任务RecursiveAction;RecursiveTask

    1,给定并行级别: 1,ExecutorService newWorkStealingPool(int parallelism): 创建持有足够的线程的线程池来支持给定的并行级别,该方法还会使用多个队 ...

  4. 更快的Maven来了

    Maven经常被拿来和Gradle做对比,最大的劣势之一就是Maven构建慢,Gradle比Maven构建速度快2到10倍,而如今Maven也可以更快了.Apache Maven团队从Gradle和T ...

  5. html5调用摄像头截图

    关于html5调用音视频等多媒体硬件的API已经很成熟,不过一直找不到机会把这些硬件转化为实际的应用场景,不过近年来随着iot和AI的浪潮,我觉得软硬结合的时机已经成熟.那我们就提前熟悉下怎么操作这些 ...

  6. 【LeetCode】1180. Count Substrings with Only One Distinct Letter 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 组合数 日期 题目地址:https://leetcod ...

  7. pandas tutorial

    目录 Series 利用dict来创建series 利用标量创建series 取 Dataframe 利用dict创建dataframe 选择 添加列 列移除 行的选择, 添加, 移除 Panel B ...

  8. BUUCTF [极客大挑战 2019]Not Bad

    总的来说这是一个64位orw的题 开头先在主函数里分配了一个很大的空间 1 __int64 __fastcall main(int a1, char **a2, char **a3) 2 { 3 mm ...

  9. MySQL高级查询与编程笔记 • 【第5章 常见数据库对象】

    全部章节   >>>> 本章目录 5.1 视图 5.1.1 视图的定义 5.1.2 视图的优点 5.1.3 视图的创建和使用 5.1.4 利用视图解决数据库的复杂应用 5.1. ...

  10. HTML网页设计基础笔记 • 【第3章 表单】

    全部章节   >>>> 本章目录 3.1 表单 3.1.1 表单概述 3.1.1 表单概述(续) 3.1.2 表单标签 3.1.3 表单数据的提交方式 3.2 输入框和按钮 3 ...