过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现,Google的分布式锁系统Chubby作为Paxos实现曾经遭遇到很多坑。

  来自Stanford的新的分布式协议研究称为Raft,它是一个为真实世界应用建立的协议,主要注重协议的落地性和可理解性。

  在了解Raft之前,我们先了解Consensus一致性这个概念,它是指多个服务器在状态达成一致,但是在一个分布式系统中,因为各种意外可能,有的服务器可能会崩溃或变得不可靠,它就不能和其他服务器达成一致状态。这样就需要一种Consensus协议,一致性协议是为了确保容错性,也就是即使系统中有一两个服务器当机,也不会影响其处理过程。

  为了以容错方式达成一致,我们不可能要求所有服务器100%都达成一致状态,只要超过半数的大多数服务器达成一致就可以了,假设有N台服务器,N/2 +1 就超过半数,代表大多数了。

  Paxos和Raft都是为了实现Consensus一致性这个目标,这个过程如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。Paxos和Raft的区别在于选举的具体过程不同。

  在Raft中,任何时候一个服务器可以扮演下面角色之一:

  1. Leader: 处理所有客户端交互,日志复制等,一般一次只有一个Leader.
  2. Follower: 类似选民,完全被动
  3. Candidate候选人: 类似Proposer律师,可以被选为一个新的领导人。

Raft阶段分为两个,首先是选举过程,然后在选举出来的领导人带领进行正常操作,比如日志复制等。下面用图示展示这个过程:

1. 任何一个服务器都可以成为一个候选者Candidate,它向其他服务器Follower发出要求选举自己的请求:

2. 其他服务器同意了,发出OK。

注意如果在这个过程中,有一个Follower当机,没有收到请求选举的要求,因此候选者可以自己选自己,只要达到N/2 + 1 的大多数票,候选人还是可以成为Leader的。

3. 这样这个候选者就成为了Leader领导人,它可以向选民也就是Follower们发出指令,比如进行日志复制。

4. 以后通过心跳进行日志复制的通知

5. 如果一旦这个Leader当机崩溃了,那么Follower中有一个成为候选者,发出邀票选举。

6. Follower同意后,其成为Leader,继续承担日志复制等指导工作:

值得注意的是,整个选举过程是有一个时间限制的,如下图:

  Splite Vote是因为如果同时有两个候选人向大家邀票,这时通过类似加时赛来解决,两个候选者在一段timeout比如300ms互相不服气的等待以后,因为双方得到的票数是一样的,一半对一半,那么在300ms以后,再由这两个候选者发出邀票,这时同时的概率大大降低,那么首先发出邀票的的候选者得到了大多数同意,成为领导者Leader,而另外一个候选者后来发出邀票时,那些Follower选民已经投票给第一个候选者,不能再投票给它,它就成为落选者了,最后这个落选者也成为普通Follower一员了。

日志复制

  下面以日志复制为例子说明Raft算法,假设Leader领导人已经选出,这时客户端发出增加一个日志的要求,比如日志是"sally":

2. Leader要求Followe遵从他的指令,都将这个新的日志内容追加到他们各自日志中:

3.大多数follower服务器将日志写入磁盘文件后,确认追加成功,发出Commited Ok:

4. 在下一个心跳heartbeat中,Leader会通知所有Follwer更新commited 项目。

对于每个新的日志记录,重复上述过程。

如果在这一过程中,发生了网络分区或者网络通信故障,使得Leader不能访问大多数Follwers了,那么Leader只能正常更新它能访问的那些Follower服务器,而大多数的服务器Follower因为没有了Leader,他们重新选举一个候选者作为Leader,然后这个Leader作为代表于外界打交道,如果外界要求其添加新的日志,这个新的Leader就按上述步骤通知大多数Followers,如果这时网络故障修复了,那么原先的Leader就变成Follower,在失联阶段这个老Leader的任何更新都不能算commit,都回滚,接受新的Leader的新的更新。

总结:目前几乎所有语言都已经有支持Raft算法的库包,具体可参考:raftconsensus.github.io

英文动画演示Raft

CAP定理

分布式Paxos算法

ZooKeeper在服务发现中应用

分布式事务

转发自:https://www.jdon.com/artichect/raft.html

分布式系统一致性算法(Raft)的更多相关文章

  1. 分布式系统一致性算法 raft学习

    在学习MongoDB的过程中,有博客中写道其搭建复制集时使用了raft算法,经过简单地的搜索资料后,发现了一个特别好的网站资料.这个网站用动画的形式,非常清楚和详尽的解释了整个raft算法的精要和过程 ...

  2. 分布式系统一致性算法Raft

    Raft 算法也是一种少数服从多数的算法,在任何时候一个服务器可以扮演以下角色之一:Leader:负责 Client 交互 和 log 复制,同一时刻系统中最多存在一个Follower:被动响应请求 ...

  3. 一致性算法RAFT详解

    原帖地址:http://www.solinx.co/archives/415?utm_source=tuicool&utm_medium=referral一致性算法Raft详解背景 熟悉或了解 ...

  4. 一致性算法--Raft

    分布式一致性算法--Raft 前面一篇文章讲了Paxos协议,这篇文章讲它的姊妹篇Raft协议,相对于Paxos协议,Raft协议更为简单,也更容易工程实现.有关Raft协议和工程实现可以参考这个链接 ...

  5. 分布式_理论_06_ 一致性算法 Raft

    一.前言 五.参考资料 1.分布式理论(六)—— Raft 算法 2.分布式理论(六) - 一致性协议Raft

  6. 分布式系统一致性算法(Paxos)

    CAP理论    一致性(Consistency)    可用性(Availability)    分区容错性(网络分区)Partition toleranceCAP理论的特点,就是CAP只能满足其中 ...

  7. 分布式一致性算法--Raft

    前面一篇文章讲了Paxos协议,这篇文章讲它的姊妹篇Raft协议,相对于Paxos协议,Raft协议更为简单,也更容易工程实现.有关Raft协议和工程实现可以参考这个链接https://raft.gi ...

  8. 分布式一致性算法Raft

    什么是分布式一致性? 我们先来看一个例子: 我们有一个单节点node,这个节点可以是数据库,也可以是一台服务器,当client向node发送data时,X节点收到data,记录下来 由此可见对于单个节 ...

  9. 一致性算法Raft

    参阅:https://www.cnblogs.com/xybaby/p/10124083.html 可视化:http://thesecretlivesofdata.com/raft/

随机推荐

  1. Codeforces 1322D - Reality Show(DP)

    Codeforces 题面传送门 & 洛谷题面传送门 首先这个消消乐的顺着消的过程看起来有点难受,DP 起来有点困难.考虑对其进行一个转化:将所有出场的人按照攻击力从小到大合并,然后每次将两个 ...

  2. Codeforces 1500F - Cupboards Jumps(set)

    Codeforces 题面传送门 & 洛谷题面传送门 nb tea!!!111 首先很显然的一件事是对于三个数 \(a,b,c\),其最大值与最小值的差就是三个数之间两两绝对值的较大值,即 \ ...

  3. Atcoder Regular Contest 123 题解

    u1s1 我是真的不知道为什么现场这么多人切了 D,感觉 D 对思维要求显然要高于其他 300+ 人切掉的 D 吧(也有可能是 Atc 用户整体水平提升了?) A 开 幕 雷 击(这题似乎 wjz 交 ...

  4. EXCEL-如何在excel中对图片进行批量排版

    新建EXCEL->导入图片->如果每张图高度为33个单元格,共计10张图,那么将最后边的那张图(即正对着你的那一张)剪切粘贴到33*9行第一个单元格处->按F5定位"对象& ...

  5. Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦

    Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http ...

  6. 日常Java 2021/10/13

    Java枚举 values(), ordinal()和valueOf()方法位于java.lang.Enum类中: values()返回枚举类中所有的值 ordinal()方法可以找到每个枚举常量的索 ...

  7. 关于java中的安全管理器

    最近再查看java的源码的时候看见了这一类代码 final SecurityManager sm = System.getSecurityManager(); 想要了解这个是为了做什么,查看资料之后发 ...

  8. flink-----实时项目---day04-------1. 案例:统计点击、参与某个活动的人数和次数 2. 活动指标多维度统计(自定义redisSink)

    1. 案例 用户ID,活动ID,时间,事件类型,省份 u001,A1,2019-09-02 10:10:11,1,北京市 u001,A1,2019-09-02 14:10:11,1,北京市 u001, ...

  9. eclipse上点击open Perspective找不到java EE的解决办法

    原因:没有安装java ee等插件 Help--->Install New software---->work  with中选择All Available  Sites---->  ...

  10. 零基础学习java------21---------动态代理,java8新特性(lambda, stream,DateApi)

    1. 动态代理 在一个方法前后加内容,最简单直观的方法就是直接在代码上加内容(如数据库中的事务),但这样写不够灵活,并且代码可维护性差,所以就需要引入动态代理 1.1 静态代理实现 在讲动态代理之前, ...