考虑折半,将点按照标号是否 \(\le \frac{n}{2}\) 分成两个集合 \(S_1, S_2\)。

首先原问题的形式有点奇怪,我们不妨统计没有被覆盖覆盖的边为偶数条的情况。

这样一来问题转化为白点 导出子图 的边数为偶数的情况,这与原问题等价。

考虑 \(S_1, S_2\) 中怎样的两个集合合并是合法的,形式化地,有:

令 \(f_S(S \subseteq S_1)\) 为 \(S\) 这个集合导出子图边数的奇偶性,类似地定义 \(g_T(T \subseteq S_2)\),同时令 \(E_{S, T}(S \subseteq S_1, T \subseteq S_2)\) 为左部集合 \(S\) 到右部集合 \(T\) 的边数奇偶性,那么 \(S, T\) 合并合法当且仅当:

\[f_S \oplus E_{S, T} \oplus g_T = 0
\]

直接这样判定很没有前途,因为 \(E\) 的总量已经达到了 \(2 ^ n\) 级别,因此考虑转移判定方式。

令 \(p_S(S \subseteq S_1)\) 为 \(S_2\) 中与 \(S\) 连边为奇数的点构成的点集,那么判定条件可以改写为:

\[f_S \oplus ((p_S \& T) \& 1) \oplus g_T = 0
\]

注意到中间部分很特殊,于是我们考虑固定中间部分,统计:

\[h_Q = \sum\limits_{p_S \& T = Q} f_S \oplus g_T
\]

即可 \(\mathcal{O}(2 ^ {n / 2})\) 计算答案。

注意到上式形式与与卷积非常类似,考虑将其转化为与卷积的形式。

枚举 \(f_S = pf, g_T = pg\),令 \(vf_Q = \sum\limits_{p_S = Q} [f_S = pf], vg_Q = [g_Q = pg]\),那么有 \(f_S = pf, g_T = pg\) 时对 \(h\) 的贡献:

\[h_Q = \sum\limits_{S \& T = Q} vf_S \times vg_T
\]

直接做与卷积即可,复杂度 \(\mathcal{O}(n2 ^ {n / 2})\)。

ABC220H - Security Camera的更多相关文章

  1. Unity3D重要知识点

    数据结构和算法很重要!图形学也很重要!大的游戏公司很看重个人基础,综合能力小公司看你实际工作能力,看你的Demo. 1.什么是渲染管道? 是指在显示器上为了显示出图像而经过的一系列必要操作. 渲染管道 ...

  2. Unity3D 面试题汇总

    最先执行的方法是: 1.(激活时的初始化代码)Awake,2.Start.3.Update[FixUpdate.LateUpdate].4.(渲染模块)OnGUI.5.再向后,就是卸载模块(TearD ...

  3. Unity随机随学

    1.什么是渲染管道? 是指在显示器上为了显示出图像而经过的一系列必要操作.渲染管道中的步骤很多,都要将几何物体从一个坐标系中变换到另一个坐标系中去. 主要步骤有: 本地坐标->视图坐标-> ...

  4. 越狱Season 1-Episode 15: By the Skin and the Teeth

    Season 1, Episode 15: By the Skin and the Teeth -Pope: doctor...you can leave. 医生你得离开 -Burrows: It's ...

  5. U3D常用题

    最先执行的方法是:1.(激活时的初始化代码)Awake,2.Start.3.Update[FixUpdate.LateUpdate].4.(渲染模块)OnGUI.5.再向后,就是卸载模块(TearDo ...

  6. Questions about UIUC and USC

    Questions about UIUC and USC I am admitted to University of Illinois at Urbana-Champaign (UIUC) Prof ...

  7. Unity3D 面试ABC

    最先执行的方法是: 1.(激活时的初始化代码)Awake,2.Start.3.Update[FixUpdate.LateUpdate].4.(渲染模块)OnGUI.5.再向后,就是卸载模块(TearD ...

  8. U3D 基础

    千里之行,始于足下! 最先执行的方法是:1.(激活时的初始代码)Awake2.Start3.Update(FixUpdate,LateUpdate)4.渲染模块(OnGUI)5.再向后,就是卸载模块( ...

  9. Unity3d笔试题大全

    1.       [C#语言基础]请简述拆箱和装箱. 答: 装箱操作: 值类型隐式转换为object类型或由此值类型实现的任何接口类型的过程. 1.在堆中开辟内存空间. 2.将值类型的数据复制到堆中. ...

随机推荐

  1. Windows 11实现直播,VLC超简单实现捕获、串流、播放

    上一篇文章说了搭建Nginx的rtmp服务.实现直播功能 期间发现一个更便捷的工具 VLC media play,官方下载:https://www.videolan.org 1.傻瓜式安装,略过 2. ...

  2. 第九个知识点:香农(Shannon)定义的熵和信息是什么?

    第九个知识点:香农(Shannon)定义的熵和信息是什么 这是计算机理论的最后一篇.我们讨论信息理论的基础概念,什么是香农定义的熵和信息. 信息论在1948年被Claude E.Shannon建立.信 ...

  3. FreeSql.Provider.SqliteCore如何加密

    FreeSql.Provider.SqliteCore 是FreeSql基于微软提供的最新的Microsoft.Data.Sqlite.Core驱动的实现. 支持的版本 .NETStandard2.0 ...

  4. Capstone CS5265规格书|CS5265参数|TYPEC转HDMI音视频转换拓展坞芯片

    一.CS5265总概 Capstone CS5265 USB Type-C到HDMI转换器结合了USB Type-C输入接口和数字高清多媒体接口(HDMI)输出.嵌入式微控制器(MCU)基于工业标准8 ...

  5. IT6516DP转VGA转换器|替代台湾联阳IT6516方案|CS5212Capstone

    台湾联阳IT6516是一种高性能的DP显示端口到VGA转换器方案芯片.IT6516结合DisplayPort接收器和三重DAC,通过转换功能支持DisplayPort输入和VGA输出.内置Displa ...

  6. JUC之集合中的线程安全问题

    集合线程安全问题 JDK Version:9 首先说下集合线程安全是什么:当多个线程对同一个集合进行添加和查询的时候,出现异常错误. 复现例子: package com.JUC; import jav ...

  7. Log4j2进阶使用(Pattern Layout详细设置)

    1.进阶说明 通过配置Layout打印格式化的日志, Log4j2支持很多的Layouts: CSV GELF HTML JSON Pattern Serialized Syslog XML YAML ...

  8. Eclipse+Maven+JDK+tomcat搭建java的开发环境

    由于最近有几个同事都在学习java方面的东西,所以我写个博文做下笔记,其中遇到过很多个坑,这里就不多说了 首先,我用的是Eclipse+Maven的组合,用Ecplise是周边java开发的同事用这个 ...

  9. Python中去除字符串中的单个或多个空格的方法总结

    python中去除字符串中空格的方法比较多,单个看起来也都比较简单 但是使用起来容易发生混淆 为了加深记忆 将常用的去除字符串中空格的方法汇总如下 方法一:strip()方法 >>> ...

  10. spring boot -- 配置文件application.properties 换成 application.yml

    1.前言 其实两种配置文件在spring boot 的作用一样,只是写法不同 ,yml 可以写的内容更少 ,以树结构 书写内容,看起来很清晰, 但是 如果 项目配置文件设置为 既有properties ...