本部分的代码目前都是基于GitHub大佬非常详细的TensorFlow的教程上,首先给出链接:

https://github.com/aymericdamien/TensorFlow-Examples/

本人对其中部分代码做了注释和中文翻译,会持续更新,目前包括:

  1. 传统多层神经网络用语MNIST数据集分类(代码讲解,翻译)

1. 传统多层神经网络用语MNIST数据集分类(代码讲解,翻译)

 

  1 """ Neural Network.
2
3 A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
4 implementation with TensorFlow. This example is using the MNIST database
5 of handwritten digits (http://yann.lecun.com/exdb/mnist/).
6
7 Links:
8 [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
9
10 Author: Aymeric Damien
11 Project: https://github.com/aymericdamien/TensorFlow-Examples/
12 """
13
14 from __future__ import print_function
15
16 # Import MNIST data
17 # 导入mnist数据集
18 from tensorflow.examples.tutorials.mnist import input_data
19 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
20
21 # 导入tf
22 import tensorflow as tf
23
24 # Parameters
25 # 设定各种超参数
26 learning_rate = 0.1 # 学习率
27 num_steps = 500 # 训练500次
28 batch_size = 128 # 每批次取128个样本训练
29 display_step = 100 # 每训练100步显示一次
30
31 # Network Parameters
32 # 设定网络的超参数
33 n_hidden_1 = 256 # 1st layer number of neurons
34 n_hidden_2 = 256 # 2nd layer number of neurons
35 num_input = 784 # MNIST data input (img shape: 28*28)
36 num_classes = 10 # MNIST total classes (0-9 digits)
37
38 # tf Graph input
39 # tf图的输入,因为不知道到底输入大小是多少,因此设定占位符
40 X = tf.placeholder("float", [None, num_input])
41 Y = tf.placeholder("float", [None, num_classes])
42
43 # Store layers weight & bias
44 # 初始化w和b
45 weights = {
46 'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
47 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
48 'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
49 }
50 biases = {
51 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
52 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
53 'out': tf.Variable(tf.random_normal([num_classes]))
54 }
55
56
57 # Create model
58 # 创建模型
59 def neural_net(x):
60 # Hidden fully connected layer with 256 neurons
61 # 隐藏层1,全连接了256个神经元
62 layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
63 # Hidden fully connected layer with 256 neurons
64 # 隐藏层2,全连接了256个神经元
65 layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
66 # Output fully connected layer with a neuron for each class
67 # 最后作为输出的全连接层,对每一分类连接一个神经元
68 out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
69 return out_layer
70
71 # Construct model
72 # 开启模型
73 # 输入数据X,得到得分向量logits
74 logits = neural_net(X)
75 # 用softmax分类器将得分向量转变成概率向量
76 prediction = tf.nn.softmax(logits)
77
78 # Define loss and optimizer
79 # 定义损失和优化器
80 # 交叉熵损失, 求均值得到---->loss_op
81 loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
82 logits=logits, labels=Y))
83 # 优化器使用的是Adam算法优化器
84 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
85 # 最小化损失得到---->可以训练的train_op
86 train_op = optimizer.minimize(loss_op)
87
88 # Evaluate model
89 # 评估模型
90 # tf.equal() 逐个元素进行判断,如果相等就是True,不相等,就是False。
91 correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
92 # tf.cast() 数据类型转换----> tf.reduce_mean() 再求均值
93 accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
94
95 # Initialize the variables (i.e. assign their default value)
96 # 初始化这些变量(作用比如说,给他们分配随机默认值)
97 init = tf.global_variables_initializer()
98
99 # Start training
100 # 现在开始训练啦!
101 with tf.Session() as sess:
102
103 # Run the initializer
104 # 运行初始化器
105 sess.run(init)
106
107 for step in range(1, num_steps+1):
108 # 每批次128个训练,取出这128个对应的data:x;标签:y
109 batch_x, batch_y = mnist.train.next_batch(batch_size)
110 # Run optimization op (backprop)
111 # train_op是优化器得到的可以训练的op,通过反向传播优化模型
112 sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
113 # 每100步打印一次训练的成果
114 if step % display_step == 0 or step == 1:
115 # Calculate batch loss and accuracy
116 # 计算每批次的是损失和准确度
117 loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
118 Y: batch_y})
119 print("Step " + str(step) + ", Minibatch Loss= " + \
120 "{:.4f}".format(loss) + ", Training Accuracy= " + \
121 "{:.3f}".format(acc))
122
123 print("Optimization Finished!")
124
125 # Calculate accuracy for MNIST test images
126 # 看看在测试集上,我们的模型表现如何
127 print("Testing Accuracy:", \
128 sess.run(accuracy, feed_dict={X: mnist.test.images,
129 Y: mnist.test.labels}))

TensorFlow入门示例教程的更多相关文章

  1. [转] Struts2入门示例教程

    原文地址:http://blog.csdn.net/wwwgeyang777/article/details/19078545/ 回顾Struts2的使用过程,网上搜的教程多多少少都会有点问题,重新记 ...

  2. DWR 3.0 入门示例教程

    DWR(Direct Web Remoting) DWR is a Java library that enables Java on the server and JavaScript in a b ...

  3. Step by Step 真正从零开始,TensorFlow详细安装入门图文教程!帮你完成那个最难的从0到1

    摘要: Step by Step 真正从零开始,TensorFlow详细安装入门图文教程!帮你完成那个最难的从0到1 安装遇到问题请文末留言. 悦动智能公众号:aibbtcom AI这个概念好像突然就 ...

  4. 【转】真正从零开始,TensorFlow详细安装入门图文教程!(帮你完成那个最难的从0到1)

    AI这个概念好像突然就火起来了,年初大比分战胜李世石的AlphaGo成功的吸引了大量的关注,但其实看看你的手机上的语音助手,相机上的人脸识别,今日头条上帮你自动筛选出来的新闻,还有各大音乐软件的歌曲& ...

  5. 真正从零开始,TensorFlow详细安装入门图文教程!

    本文转载地址:https://www.leiphone.com/news/201606/ORlQ7uK3TIW8xVGF.html AI这个概念好像突然就火起来了,年初大比分战胜李世石的AlphaGo ...

  6. TensorFlow入门,基本介绍,基本概念,计算图,pip安装,helloworld示例,实现简单的神经网络

    TensorFlow入门,基本介绍,基本概念,计算图,pip安装,helloworld示例,实现简单的神经网络

  7. TensorFlow入门教程集合

    TensorFlow入门教程之0: BigPicture&极速入门 TensorFlow入门教程之1: 基本概念以及理解 TensorFlow入门教程之2: 安装和使用 TensorFlow入 ...

  8. ASP.NET Aries 入门开发教程7:DataGrid的行操作(主键操作区)

    前言: 抓紧勤奋,再接再励,预计共10篇来结束这个系列. 上一篇介绍:ASP.NET Aries 入门开发教程6:列表数据表格的格式化处理及行内编辑 本篇介绍主键操作区相关内容. 1:什么时候有默认的 ...

  9. ASP.NET Aries 入门开发教程6:列表数据表格的格式化处理及行内编辑

    前言: 为了赶进度,周末也写文了! 前几篇讲完查询框和工具栏,这节讲表格数据相关的操作. 先看一下列表: 接下来我们有很多事情可以做. 1:格式化 - 键值的翻译 对于“启用”列,已经配置了格式化 # ...

随机推荐

  1. Water 2.5 发布,一站式服务治理平台

    Water(水孕育万物...) Water 为项目开发.服务治理,提供一站式解决方案(可以理解为微服务架构支持套件).基于 Solon 框架开发,并支持完整的 Solon Cloud 规范:已在生产环 ...

  2. Redis内存满了怎么办(新年快乐)

    Redis内存满了怎么办(新年快乐) 入我相思门,知我相思苦. 长相思兮长相忆,短相思兮无穷极. 一.配置文件 Redis长期使用或者不设置过期时间,导致内存爆满或不足,可以到Redis的配置文件re ...

  3. AGC004 部分简要题解

    E 首先问题可以转化为:每次将出口带着边界走,出了边界的机器人立马消失,最大化出口碰到的机器人数量. 考虑哪些机器人是已经出界了的,不难有观察: 当前出界的机器人只与当前出口往四个方向走过的最远距离有 ...

  4. resp.getWriter().print(categoryList)、resp.getWriter().write(String)与new ObjectMapper().writeValue(resp.getOutputStream(),categoryList)的区别

    前言:最近在复习原生的servlet的时候,对其输出流不理解,故总结一下: resp.getWriter().print(categoryList) 可以输出字符串,也可以输出对象,可能还有其他类型, ...

  5. 一次线上服务高 CPU 占用优化实践 (转)

    线上有一个非常繁忙的服务的 JVM 进程 CPU 经常跑到 100% 以上,下面写了一下排查的过程.通过阅读这篇文章你会了解到下面这些知识. Java 程序 CPU 占用高的排查思路 可能造成线上服务 ...

  6. Callable接口及Futrue接口详解

    Callable接口 有两种创建线程的方法-一种是通过创建Thread类,另一种是通过使用Runnable创建线程.但是,Runnable缺少的一项功能是,当线程终止时(即run()完成时),我们无法 ...

  7. VC 获取已系统安装的字体

    转载请注明来源:https://www.cnblogs.com/hookjc/ BOOL CALLBACK EnumFonts(CONST LOGFONT* lplf, CONST TEXTMETRI ...

  8. Lvs+Keepalived+MySQL Cluster架设高可用负载均衡Mysql集群

    ------------------------------------- 一.前言 二.MySQL Cluster基本概念 三.环境 四.配置 1.LB-Master及LB-Backup配置 2.M ...

  9. 编译安装nginx,实现多域名 https

    一.编译安装nginx 1.1 获取源码包 [root@cetnos7 ~]#wget -O /usr/local/src/nginx-1.18.0.tar.gz http://nginx.org/d ...

  10. JetBrains官博:将从IntelliJ平台移除Log4j的依赖

    今早,DD注意到JetBrains在官方博客发文宣布要将log4j从IntelliJ平台移除了,该变化将在2022.1版本发布. 从博文看,本次移除log4j的漏洞,并非担心log4j2的漏洞问题,因 ...