矩阵分解---QR正交分解,LU分解
- 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等。两个向量正交的意思是两个向量的内积为 0
- 正定矩阵:如果对于所有的非零实系数向量x ,都有 x'Ax>0,则称矩阵A 是正定的。正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0。相对应的,半正定矩阵的行列式必然 ≥ 0。
QR分解
任意实数方阵A,都能被分解为A=QR。这里的Q为正交单位阵,即QTQ=I。R是一个上三角矩阵。这种分解被称为QR分解。
QR分解也有若干种算法,常见的包括Gram–Schmidt、Householder和Givens算法。

这其中, Q为正交矩阵,R为上三角矩阵。
实际中,QR分解经常被用来解线性最小二乘问题。
计算方法:

- 对于非方阵的m∗n(m≥n)阶矩阵A也可能存在QR分解。这时Q为m*m阶的正交矩阵,R为m*n阶上三角矩阵。这时的QR分解不是完整的(方阵),因此称为约化QR分解(对于列满秩矩阵A必存在约化QR分解)。同时也可以通过扩充矩阵A为方阵或者对矩阵R补零,可以得到完全QR分解。
LU分解---三角分解

LU分解常用来求解线性方程组,求逆矩阵或者计算行列式。例如在计算行列式的时候,,。而对于三角矩阵来说,行列式的值即为对角线上元素的乘积。所以如果对矩阵进行三角分解以后再求行列式,就会变得非常容易。
在线性代数中已经证明,如果方阵是非奇异的,即的行列式不为0,LU分解总是存在的。
矩阵分解---QR正交分解,LU分解的更多相关文章
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
- LU分解(2)
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式 ...
- MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...
- 第五节、矩阵分解之LU分解
一.A的LU分解:A=LU 我们之前探讨过矩阵消元,当时我们通过EA=U将A消元得到了U,这一节,我们从另一个角度分析A与U的关系 假设A是非奇异矩阵且消元过程中没有行交换,我们便可以将矩阵消元的EA ...
- 矩阵LU分解程序实现(Matlab)
n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=z ...
- 矩阵LU分解的MATLAB与C++实现
一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \beg ...
- 矩阵LU分解
有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b ...
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
随机推荐
- 【xsy3423】党² 线段树+李超线段树or动态半平面交
本来并不打算出原创题的,此题集CF542A和sk的灵感而成,算个半原创吧. 题目大意: 给定有$n$个元素的集合$P$,其中第$i$个元素中包含$L_i,R_i,V_i$三个值. 给定另一个有$n$个 ...
- 如何正确的加载和执行 JavaScript 代码
无论当前 JavaScript 代码是内嵌还是在外链文件中,页面的下载和渲染都必须停下来等待脚本执行完成.JavaScript 执行过程耗时越久,浏览器等待响应用户输入的时间就越长.浏览器在下载和执行 ...
- POJ 1032
#include<iostream> using namespace std; int main() { int n; int num; ; int i,j; cin>>num ...
- bootstrap-validator
使用bootstrap-validator挺多的,虽然自己写认证并不复杂,我一向喜欢现成的控件,原因是风格一致,不容易出错. 这个是接口文档:http://bv.doc.javake.cn/setti ...
- 对Deeplung检测+两样性分类的一个整合
整体的流程分为以下几步: 读取原始数据(.mhd文件)——> 生成mask ——> 对数据预处理 ——> 执行检测 ——> 对检测结果进行分类 ——>可视化 懒一点,不贴 ...
- 使用Maven命令行快速创建项目骨架(archetype)
> mvn archetype:generate 接下来就会输出一些列带索引变化的archetype项可供我们选择,然后提示我们选择一个编号,可以直接回车选择默认的编号(392),然后就跟着 ...
- 【java排序】冒泡排序、快速排序
冒泡排序 冒泡排序是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地 进行直到没有再需要交换,也就是说该数列已经排序完成.这 ...
- springboot-18-springboot的参数封装
springboot的参数封装, 和springmvc相识 简单参数的封装 1.直接把表单的参数写在Controller相应的方法的形参中,适用于get方式提交,不适用于post方式提交. /** * ...
- JAVA 导出 Excel, JS 导出 Excel
本介绍两种Excle导出方法: JAVA 导出 Excle, JS 导出 Excle 1, js 根据 html 页面的 table > tr > td 标签导出 js代码: //导出 v ...
- PowerDesigner中利用数据库表反向生成PDM(jdk必须是32位)
第一步:创建一个空的PDM模型(选择对应的DBMS):File-->New 第二步:选择DataBase-->Configure Connections,配置即将连接的数据库 第三步:选择 ...