[洛谷P4492] [HAOI2018]苹果树
洛谷题目链接:[HAOI2018]苹果树
题目背景
HAOI2018 Round2 第一题
题目描述
小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点.
第一天的时候, 果树会长出一个根结点, 以后每一天, 果树会随机选择一个当前树中没有长出过结点 的分支, 然后在这个分支上长出一个新结点, 新结点与分支所属的结点之间连接上一条边.
小 C 定义一棵果树的不便度为树上两两结点之间的距离之和, 两个结点之间 的距离定义为从一个点走到另一个点的路径经过的边数.
现在他非常好奇, 如果 \(N\) 天之后小 G 来他家摘苹果, 这个不便度的期望 \(E\) 是多少. 但是小 C 讨厌分数, 所以他只想知道 \(E \times N !\) 对 \(P\) 取模的结果, 可以证明这是一个整数.
输入输出格式
输入格式:
从标准输入中读入数据. 一行两个整数 \(N\), \(P\) .
输出格式:
输出到标准输出中. 输出一个整数表示答案.
输入输出样例
输入样例#1:
3 610745795
输出样例#1:
24
输入样例#2:
305 1000000007
输出样例#2:
865018107
说明
以上是所有 \(N = 3\) 时可能的苹果树形态, 其中编号表示这个结点是第几天生 长出来的, 显然每种情况两两结点的距离均为 \(4\) .
题解: 这个枚举方式比较神奇...我也不太清楚为什么可以做到不重不漏,有人会可以帮我分析一下...
直接讲方法吧:
首先考虑如何计算贡献,我们分每条边来计算贡献,那么总贡献就是\(\sum size*(n-size)\)
考虑当前枚举到了节点\(i\),它有一颗大小为\(j\)的子树,那么前\(i\)个节点可能组成的方案数是\(i!\),这个大小为\(j\)的子树的方案数有\(j!\)种,然后剩下的\(n-i-j\)个节点随便放,第一个节点可以放置的方案是\(i\)种,第二个是\(i+1\)种,那么剩下节点随便放的贡献就是\(\frac{(n-j)!}{(i-1)!}\),总贡献就是:$$\sum_{i=1}{n}\sum_{j=1}{n-i}i!2C_{n-i}^jj!j(n-j)\frac{(n-j)!}{(i-1)!}$$
因为不一定存在逆元,可以先递推杨辉三角,然后把最后那部分用组合数乘阶乘的形式表示出来.
当然这题也有\(DP\)的解法,有兴趣可以自己看看别的题解
#include<bits/stdc++.h>
using namespace std;
const int N = 2000+5;
int n, mod, fac[N], c[N][N], ans = 0;
int main(){
cin >> n >> mod; c[0][0] = fac[0] = fac[1] = 1;
for(int i = 1; i <= n; i++){
c[i][0] = 1;
for(int j = 1; j <= n; j++) c[i][j] = (c[i-1][j]+c[i-1][j-1])%mod;
}
for(int i = 1; i <= n; i++) fac[i] = 1ll*fac[i-1]*i%mod;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n-i; j++)
(ans += 1ll*fac[i]*2%mod*c[n-i][j]%mod*fac[j]%mod*j%mod*(n-j)%mod*c[n-j-1][n-i-j]%mod*fac[n-i-j]%mod) %= mod;
cout << ans << endl;
return 0;
}
[洛谷P4492] [HAOI2018]苹果树的更多相关文章
- 洛谷P4492 [HAOI2018]苹果树(组合数)
题意 题目链接 Sol 有点自闭,.我好像对组合数一窍不通(~~~~) Orz shadowice // luogu-judger-enable-o2 #include<bits/stdc++. ...
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- 题解 洛谷 P4492 【[HAOI2018]苹果树】
考虑生成一颗二叉树的过程,加入第一个节点方案数为\(1\),加入第二个节点方案数为\(2\),加入第三个节点方案数为\(3\),发现生成一颗\(n\)个节点的二叉树的方案数为\(n!\). 所以题目中 ...
- 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告
P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...
- P4492 [HAOI2018]苹果树
思路 题目要求的其实就是每种方案的权值之和(因为每种方案的概率相等) 所以自然想到要求所有的边对最终答案的贡献次数 考虑这一条边被经过了多少次,有这个子树内的点数*子树外的点数次,即\(k\times ...
- 洛谷P4493 [HAOI2018]字串覆盖(后缀自动机+线段树+倍增)
题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能 ...
- 洛谷P4494 [HAOI2018]反色游戏(tarjan)
题面 传送门 题解 我们先来考虑一个联通块,这些关系显然可以写成一个异或方程组的形式,形如\(\oplus_{e\in edge_u}x_e=col_u\) 如果这个联通块的黑色点个数为奇数,那么显然 ...
- 洛谷P4495 [HAOI2018]奇怪的背包(数论)
题面 传送门 题解 好神仙的思路啊--orzyyb 因为不限次数,所以一个体积为\(V_i\)的物品可以表示出所有重量为\(\gcd(V_i,P)\)的倍数的物品,而所有物品的总和就是这些所有的\(\ ...
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
随机推荐
- Hibernate连接数据库一直报NullPointerException
原来是少了这个.. //private HibernateTemplate hibernateTemplate; //少了下面 public HibernateTemplate getHibernat ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (五) 树莓派单子节点发送数据
本项目中各个节点和树莓派的通信不区分信道,因此如果由树莓派发送给特定节点的数据会被所有节点接收到,因此子节点可以判别该数据是否发给自己的,需要在数据的第二个字节中加入目标节点的编号(第一个字节为源节点 ...
- flex 布局能解决的问题
flex 布局,可以解决元素在容器中的对齐.方向.顺序,甚至它们是动态的或者不确定大小的新布局模型.Flex容器的主要特征是能够调整其子元素在不同的屏幕大小中能够用最适合的方法填充合适的空间 . 转载 ...
- Internet History, Technology and Security (Week 8)
Week 8 Security: Encrypting and Signing This week we start two weeks of Internet Security. It is a l ...
- ansible的简单使用
环境搭建跳过(暂无,这个以后再学习学习,不要在意这些细节) 首先,在环境搭建好后,用两台虚机来做测试,一台192.168.181.130做测试机,一台192.168.181.131为批量处理服务器 编 ...
- PAT 1074 宇宙无敌加法器
https://pintia.cn/problem-sets/994805260223102976/problems/994805263297527808 地球人习惯使用十进制数,并且默认一个数字的每 ...
- Spring面试,IoC和AOP的理解, @Transactional原理及使用
spring 的优点?1.降低了组件之间的耦合性 ,实现了软件各层之间的解耦 2.可以使用容易提供的众多服务,如事务管理,消息服务等 3.容器提供单例模式支持 4.容器提供了AOP技术,利用它很容易实 ...
- 【刷题】BZOJ 3668 [Noi2014]起床困难综合症
Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...
- 51nod 1678 lyk与gcd | 容斥原理
51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...
- 【转】查看 Linux 发行版名称和版本号的 8 种方法
如果你加入了一家新公司,要为开发团队安装所需的软件并重启服务,这个时候首先要弄清楚它们运行在什么发行版以及哪个版本的系统上,你才能正确完成后续的工作.作为系统管理员,充分了解系统信息是首要的任务. 查 ...