Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarray of A.

Since the answer may be large, return the answer modulo 10^9 + 7.

Example 1:

Input: [3,1,2,4]
Output: 17
Explanation: Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1.  Sum is 17.

Note:

  1. 1 <= A.length <= 30000
  2. 1 <= A[i] <= 30000

Approach #1: Monotone Stack. [Java]

class Solution {
public int sumSubarrayMins(int[] A) {
int n = A.length;
Stack<int[]> in_stk_p = new Stack<>(), in_stk_n = new Stack<>();
// left is for the distance to previous less element
// right is for the distance to next less element.
int[] left = new int[n], right = new int[n];
for (int i = 0; i < n; ++i) left[i] = i + 1;
for (int i = 0; i < n; ++i) right[i] = n - i; for (int i = 0; i < n; ++i) {
while (!in_stk_p.isEmpty() && in_stk_p.peek()[0] > A[i]) in_stk_p.pop();
left[i] = in_stk_p.isEmpty() ? i + 1 : i - in_stk_p.peek()[1];
in_stk_p.push(new int[] {A[i], i}); while (!in_stk_n.isEmpty() && in_stk_n.peek()[0] > A[i]) {
int[] x = in_stk_n.peek();
in_stk_n.pop();
right[x[1]] = i - x[1];
}
in_stk_n.push(new int[] {A[i], i});
} int res = 0, mod = (int)1e9 + 7;
for (int i = 0; i < n; ++i)
res = (res + A[i]*left[i]*right[i]) % mod; return res;
}
}

  

Analysis:

Before diving into the solution, we first introduce a very important stack type, which is called momotone stack.

What is monotonous increase stack?

Roughly spkeaking, the elements in the an monotonous increase stack keeps an increasing order.

The typical paradigm for monotonous increase stack:

for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && in_stk.top() > A[i]){
in_stk.pop();
}
in_stk.push(A[i]);
}.

  

What can monotonous increase stack do?

(1) find the previous less element of each element in a vector with O(n) time:

What is the previous less element of an element?

For example:

[3, 7, 8, 4]

The previous less element of 7 is 3.

The previous less element of 8 is 7.

The previous less element of 4 is 3.

There are no previous less element for 3.

For simplicity of notation, we use abbreviation PLE to denote Previous Less Element.

C++ code (by slitghly modifying the paradigm):

Instead of directly pushing the element itself, here for simplicity, we push the incex.

We do some record when the index is pushed into the stack.

// previous_less[i] = j means A[j] is the previous less element of A[i].

// previous_less[i] = -1 means there is no previous less element of A[i].

vector<int> previous_less(A.size(), -1);
for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && A[in_stk.top()] > A[i]){
in_stk.pop();
}
previous_less[i] = in_stk.empty()? -1: in_stk.top();
in_stk.push(i);
}

  

(2) find the next less element of each element in a vector with O(n) time:

What is the next less element of an element?

For example:

[3, 7, 8, 4]

The next less element of 8 is 4.

The next less element of 7 is 4.

There is no next less element for 3 and 4.

For simplicity of notation, we use abbreviation NLE to denote Next Less Element.

C++ code (by slighly modifying the paradigm):

We do some record when the index is poped out from the stack.

// next_less[i] = j means A[j] is the next less element of A[i].

// next_less[i] = -1 mean there is no next less element of A[i].

vector<int> previous_less(A.size(), -1);
for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && A[in_stk.top()] > A[i]){
auto x = in_stk.top(); in_stk.pop();
next_less[x] = i;
}
in_stk.push(i);
}

  

How can the monotonous increase stack be applied to this problem?

For example:

Consider the element 3 in the following vector:

        [2, 9, 7, 8, 3, 4, 6, 1]

         |         |

    the previous less    the next less

      element of 3       element of 3

After finding both NLE and PLE of 3, we can determine the distance between 3 and 2(prevous less), and the distance between 3 and 1(next less). In this example, the distance is 4 and 3 respectively.

How many subarray with 3 being its minimum value?

The answer is 4 * 3.

How much the element 3 contributes to the final answer?

It is 3 * (3 * 4).

What is the final answer?

Denote  by left[i] the distance between element A[i] and its PLE.

Denote by right[i] the distance beween element A[i] and its NLE.

The final answer is:

sum(A[i] * left[i] * right[i])

Approach #2: Optimize [C++]

class Solution {
public:
int sumSubarrayMins(vector<int>& A) {
int res = 0, n = A.size(), mod = 1e9 + 7, j, k;
stack<int> s;
for (int i = 0; i <= n; ++i) {
while (!s.empty() && A[s.top()] > (i == n ? 0 : A[i])) {
j = s.top(), s.pop();
k = s.empty() ? -1 : s.top();
res = (res + A[j] * (i - j) * (j - k)) % mod;
}
s.push(i);
}
return res;
}
};

  

Analysis:

1. Here we record (A[i], i) in the stack. We can also only record index.

2. For left part and right part, the logic is same.

So for each, we used one stack and one pass.

This process can be optimized to one pass using one stack in total.

Reference:

https://leetcode.com/problems/sum-of-subarray-minimums/discuss/170750/C%2B%2BJavaPython-Stack-Solution

https://docs.oracle.com/javase/7/docs/api/java/util/Stack.html

https://leetcode.com/problems/sum-of-subarray-minimums/discuss/178876/stack-solution-with-very-detailed-explanation-step-by-step

907. Sum of Subarray Minimums的更多相关文章

  1. [LeetCode] 907. Sum of Subarray Minimums 子数组最小值之和

    Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...

  2. 【leetcode】907. Sum of Subarray Minimums

    题目如下: 解题思路:我的想法对于数组中任意一个元素,找出其左右两边最近的小于自己的元素.例如[1,3,2,4,5,1],元素2左边比自己小的元素是1,那么大于自己的区间就是[3],右边的区间就是[4 ...

  3. [Swift]LeetCode907. 子数组的最小值之和 | Sum of Subarray Minimums

    Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...

  4. 子数组最小值的总和 Sum of Subarray Minimums

    2018-09-27 23:33:49 问题描述: 问题求解: 方法一.DP(MLE) 动态规划的想法应该是比较容易想到的解法了,因为非常的直观,但是本题的数据规模还是比较大的,如果直接使用动态规划, ...

  5. leetcode907 Sum of Subarray Minimums

    思路: 对于每个数字A[i],使用单调栈找到A[i]作为最小值的所有区间数量,相乘并累加结果.时间复杂度O(n). 实现: class Solution { public: int sumSubarr ...

  6. LC 918. Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  7. 动态规划-Maximum Subarray-Maximum Sum Circular Subarray

    2020-02-18 20:57:58 一.Maximum Subarray 经典的动态规划问题. 问题描述: 问题求解: public int maxSubArray(int[] nums) { i ...

  8. [Swift]LeetCode918. 环形子数组的最大和 | Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  9. Maximum Sum Circular Subarray LT918

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

随机推荐

  1. jmeter 常见问题汇总

    文件读取中文乱码: 读取CSV文件,出现中文乱码,纠正方式如下: txt文件乱码 在用到该变量的请求上加上UTF-8 post请求 返回“ Content type 'application/x-ww ...

  2. pkg_config找不到库

    解决方法 假设libavutil默认安装时libavutil.pc安装到了 /usr/lib64/lib/pkgconfig/ 中,而 echo $PKG_CONFIG_PATH 结果中没有这个路径, ...

  3. 用Fiddler抓到的报文Content-Type: application/x-www-form-urlencoded,怎样解析?

    抓到的HTTPS请求报文,在报文头中Content-Type: application/x-www-form-urlencoded 报文体为: entrypoint=clientmanagement& ...

  4. cxf soap rest webservice spring

    1. 导入 jar 包 2. 编写接口 3. 编写实现 4. 配置spring 配置文件 5. 配置web.xml servlet 6. 访问 package com.diancai.test; im ...

  5. HTTP 500.21 处理程序“PageHandlerFactory-Integrated”在其模块列表中有一个错误模块“ManagedPipelineHandler”

    问题:处理程序“PageHandlerFactory-Integrated”在其模块列表中有一个错误模块“ManagedPipelineHandler” IIS7下部署网站出现错误,原因是先安装的II ...

  6. 2018.09.09 UVa10529 - Dumb Bones(期望dp)

    传送门 期望dp好题. f[i]表示摆放i个的最小花费,于是f[i]可以从f[j]与f[i-j+1]转移过来了. 代码: #include<bits/stdc++.h> #define N ...

  7. 微信小程序 获取用户openid

    1,可以在小程序app.js入口文件中放入登录代码 wx.login({ success: res => { // 登录注册接口 if (res.code) { // 调用服务端登录接口,发送 ...

  8. freeRadius与NetGear WNAP210的简使用

    1.下载安装freeRadius for win 2.2 2.配置client.cnf文件 加入 client 192.168.0.0/16{ secret=1111122222 shortname= ...

  9. About DNS

    FQDN -- Fully Qualified Domain Name TTL -- Time To Live TLD -- Top Level Domain gTLD -- Generic Top ...

  10. java中如何通过Class获取类的属性、方法、注释

    public static String getPKName(Class clazz) { Field[] fields = clazz.getDeclaredFields(); for (Field ...