Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarray of A.

Since the answer may be large, return the answer modulo 10^9 + 7.

Example 1:

Input: [3,1,2,4]
Output: 17
Explanation: Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1.  Sum is 17.

Note:

  1. 1 <= A.length <= 30000
  2. 1 <= A[i] <= 30000

Approach #1: Monotone Stack. [Java]

class Solution {
public int sumSubarrayMins(int[] A) {
int n = A.length;
Stack<int[]> in_stk_p = new Stack<>(), in_stk_n = new Stack<>();
// left is for the distance to previous less element
// right is for the distance to next less element.
int[] left = new int[n], right = new int[n];
for (int i = 0; i < n; ++i) left[i] = i + 1;
for (int i = 0; i < n; ++i) right[i] = n - i; for (int i = 0; i < n; ++i) {
while (!in_stk_p.isEmpty() && in_stk_p.peek()[0] > A[i]) in_stk_p.pop();
left[i] = in_stk_p.isEmpty() ? i + 1 : i - in_stk_p.peek()[1];
in_stk_p.push(new int[] {A[i], i}); while (!in_stk_n.isEmpty() && in_stk_n.peek()[0] > A[i]) {
int[] x = in_stk_n.peek();
in_stk_n.pop();
right[x[1]] = i - x[1];
}
in_stk_n.push(new int[] {A[i], i});
} int res = 0, mod = (int)1e9 + 7;
for (int i = 0; i < n; ++i)
res = (res + A[i]*left[i]*right[i]) % mod; return res;
}
}

  

Analysis:

Before diving into the solution, we first introduce a very important stack type, which is called momotone stack.

What is monotonous increase stack?

Roughly spkeaking, the elements in the an monotonous increase stack keeps an increasing order.

The typical paradigm for monotonous increase stack:

for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && in_stk.top() > A[i]){
in_stk.pop();
}
in_stk.push(A[i]);
}.

  

What can monotonous increase stack do?

(1) find the previous less element of each element in a vector with O(n) time:

What is the previous less element of an element?

For example:

[3, 7, 8, 4]

The previous less element of 7 is 3.

The previous less element of 8 is 7.

The previous less element of 4 is 3.

There are no previous less element for 3.

For simplicity of notation, we use abbreviation PLE to denote Previous Less Element.

C++ code (by slitghly modifying the paradigm):

Instead of directly pushing the element itself, here for simplicity, we push the incex.

We do some record when the index is pushed into the stack.

// previous_less[i] = j means A[j] is the previous less element of A[i].

// previous_less[i] = -1 means there is no previous less element of A[i].

vector<int> previous_less(A.size(), -1);
for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && A[in_stk.top()] > A[i]){
in_stk.pop();
}
previous_less[i] = in_stk.empty()? -1: in_stk.top();
in_stk.push(i);
}

  

(2) find the next less element of each element in a vector with O(n) time:

What is the next less element of an element?

For example:

[3, 7, 8, 4]

The next less element of 8 is 4.

The next less element of 7 is 4.

There is no next less element for 3 and 4.

For simplicity of notation, we use abbreviation NLE to denote Next Less Element.

C++ code (by slighly modifying the paradigm):

We do some record when the index is poped out from the stack.

// next_less[i] = j means A[j] is the next less element of A[i].

// next_less[i] = -1 mean there is no next less element of A[i].

vector<int> previous_less(A.size(), -1);
for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && A[in_stk.top()] > A[i]){
auto x = in_stk.top(); in_stk.pop();
next_less[x] = i;
}
in_stk.push(i);
}

  

How can the monotonous increase stack be applied to this problem?

For example:

Consider the element 3 in the following vector:

        [2, 9, 7, 8, 3, 4, 6, 1]

         |         |

    the previous less    the next less

      element of 3       element of 3

After finding both NLE and PLE of 3, we can determine the distance between 3 and 2(prevous less), and the distance between 3 and 1(next less). In this example, the distance is 4 and 3 respectively.

How many subarray with 3 being its minimum value?

The answer is 4 * 3.

How much the element 3 contributes to the final answer?

It is 3 * (3 * 4).

What is the final answer?

Denote  by left[i] the distance between element A[i] and its PLE.

Denote by right[i] the distance beween element A[i] and its NLE.

The final answer is:

sum(A[i] * left[i] * right[i])

Approach #2: Optimize [C++]

class Solution {
public:
int sumSubarrayMins(vector<int>& A) {
int res = 0, n = A.size(), mod = 1e9 + 7, j, k;
stack<int> s;
for (int i = 0; i <= n; ++i) {
while (!s.empty() && A[s.top()] > (i == n ? 0 : A[i])) {
j = s.top(), s.pop();
k = s.empty() ? -1 : s.top();
res = (res + A[j] * (i - j) * (j - k)) % mod;
}
s.push(i);
}
return res;
}
};

  

Analysis:

1. Here we record (A[i], i) in the stack. We can also only record index.

2. For left part and right part, the logic is same.

So for each, we used one stack and one pass.

This process can be optimized to one pass using one stack in total.

Reference:

https://leetcode.com/problems/sum-of-subarray-minimums/discuss/170750/C%2B%2BJavaPython-Stack-Solution

https://docs.oracle.com/javase/7/docs/api/java/util/Stack.html

https://leetcode.com/problems/sum-of-subarray-minimums/discuss/178876/stack-solution-with-very-detailed-explanation-step-by-step

907. Sum of Subarray Minimums的更多相关文章

  1. [LeetCode] 907. Sum of Subarray Minimums 子数组最小值之和

    Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...

  2. 【leetcode】907. Sum of Subarray Minimums

    题目如下: 解题思路:我的想法对于数组中任意一个元素,找出其左右两边最近的小于自己的元素.例如[1,3,2,4,5,1],元素2左边比自己小的元素是1,那么大于自己的区间就是[3],右边的区间就是[4 ...

  3. [Swift]LeetCode907. 子数组的最小值之和 | Sum of Subarray Minimums

    Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...

  4. 子数组最小值的总和 Sum of Subarray Minimums

    2018-09-27 23:33:49 问题描述: 问题求解: 方法一.DP(MLE) 动态规划的想法应该是比较容易想到的解法了,因为非常的直观,但是本题的数据规模还是比较大的,如果直接使用动态规划, ...

  5. leetcode907 Sum of Subarray Minimums

    思路: 对于每个数字A[i],使用单调栈找到A[i]作为最小值的所有区间数量,相乘并累加结果.时间复杂度O(n). 实现: class Solution { public: int sumSubarr ...

  6. LC 918. Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  7. 动态规划-Maximum Subarray-Maximum Sum Circular Subarray

    2020-02-18 20:57:58 一.Maximum Subarray 经典的动态规划问题. 问题描述: 问题求解: public int maxSubArray(int[] nums) { i ...

  8. [Swift]LeetCode918. 环形子数组的最大和 | Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  9. Maximum Sum Circular Subarray LT918

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

随机推荐

  1. Jmeter报文体包含过大附件导致请求报文发送失败的解决办法

    Jmeter中,HTTP request的报文体为一个附件时,如果附件过大,在发送请求报文的时候会失败,办法就是勾选“Use multipart/form-data for POST”

  2. Spring 学习记录3 ConversionService

    ConversionService与Environment的关系 通过之前的学习(Spring 学习记录2 Environment),我已经Environment主要是负责解析properties和p ...

  3. asp.net请求编译流程图(其实就是说asp.netd代码是如何转成中间代码IL然后交给cpu执行的)

  4. 运行 .jar dos 命令

    命令行进入 jar  所在文件夹 执行 java -jar  a.jar;

  5. SpringBoot集成篇(二) 异步调用Async

    什么是异步调用? 异步调用是相对于同步调用而言的,同步调用是指程序按预定顺序一步步执行,每一步必须等到上一步执行完后才能执行,异步调用则无需等待上一步程序执行完即可执行. 如何实现异步调用? 多线程, ...

  6. Django的路由层(1)

    https://www.cnblogs.com/yuanchenqi/articles/8876685.html URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为 ...

  7. 《C++ Primer (V4)》读书笔记

    第2章 变量和基本类型 1.(P56)如果使用class关键字来定义类,那么定义在第一个访问标号前的任何成员都隐式指定为private:如果使用struct关键字,那么这些成员都是public. 第7 ...

  8. cmd运行命令

    winver检查Windows版本 dxdiag检查DirectX信息 mem.exe显示内存使用情况 Sndvol32音量控制程序 sfc.exe系统文件检查器 gpedit.msc 组策略 reg ...

  9. 重大发现 springmvc Controller 高级接收参数用法

    1.  数组接收 @RequestMapping(value="deleteRole.json") @ResponseBody public Object deleteRole(S ...

  10. 20155202 2016-2017-2 《Java程序设计》第6周学习总结

    20155202 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 输入输出 数据从来源取出:输入串流 java.io.InputStream 写入目的的:输出 ...