TF-搞不懂的TF矩阵加法
看谷歌的demo mnist,卷积后加偏执量的代码
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
其中的x_image的维数是[-1, 28, 28, 1],W_conv1的维数是[5, 5, 1, 32], b的维数是[32]
conv2d对x_image和W_conv1进行卷积,结果为[-1, 28, 28, 32],结果就是:
[-1, 28, 28, 32]和[32]的加法。
完全搞不清为什么[-1, 28, 28, 32]和[32]两个完全不同维数可以做加法?而且加出的结果还是[-1, 28, 28, 32]?
于是做了下面的测试:
sess = tf.InteractiveSession()
test1 = tf.ones([,,,],tf.float32)
b1 = tf.ones([])
re1 = test1 + b1
print("shap3={},eval=\n{}".format(b1.shape, b1.eval()))
print("shap4={},eval=\n{}".format(test1.shape, test1.eval()))
print("shap5={},eval=\n{}".format(re1.shape, re1.eval())) test1 = tf.ones([,,,],tf.float32)
b1 = tf.ones([,,,])
re1 = test1 + b1
print("shap6={},eval=\n{}".format(b1.shape, b1.eval()))
print("shap7={},eval=\n{}".format(test1.shape, test1.eval()))
print("shap8={},eval=\n{}".format(re1.shape, re1.eval())) test1 = tf.ones([,,,],tf.float32)
b1 = tf.ones([,,,])
re1 = test1 + b1
print("shap9 ={},eval=\n{}".format(b1.shape, b1.eval()))
print("shap10={},eval=\n{}".format(test1.shape, test1.eval()))
print("shap11={},eval=\n{}".format(re1.shape, re1.eval())) test1 = tf.ones([,,,],tf.float32)
b1 = tf.ones([])
re1 = test1 + b1
print("shap12={},eval=\n{}".format(b1.shape, b1.eval()))
print("shap13={},eval=\n{}".format(test1.shape, test1.eval()))
print("shap14={},eval=\n{}".format(re1.shape, re1.eval()))
test1 = tf.ones([1,2,2,3],tf.float32)
alist = [[[[ 1, 1, 1.],
[ 0, 0, 0.]],
[[ 1, 1, 1.],
[ 0, 0, 0.]]]]
b1 = tf.constant(alist)
re1 = test1 + b1
print("shap15={},eval=\n{}".format(b1.shape, b1.eval()))
print("shap16={},eval=\n{}".format(test1.shape, test1.eval()))
print("shap17={},eval=\n{}".format(re1.shape, re1.eval()))
结果为
shap3=(3,),eval=
[ 1. 1. 1.]
shap4=(1, 2, 2, 3),eval=
[[[[ 1. 1. 1.]
[ 1. 1. 1.]] [[ 1. 1. 1.]
[ 1. 1. 1.]]]]
shap5=(1, 2, 2, 3),eval=
[[[[ 2. 2. 2.]
[ 2. 2. 2.]] [[ 2. 2. 2.]
[ 2. 2. 2.]]]]
shap6=(1, 1, 1, 1),eval=
[[[[ 1.]]]]
shap7=(1, 2, 2, 3),eval=
[[[[ 1. 1. 1.]
[ 1. 1. 1.]] [[ 1. 1. 1.]
[ 1. 1. 1.]]]]
shap8=(1, 2, 2, 3),eval=
[[[[ 2. 2. 2.]
[ 2. 2. 2.]] [[ 2. 2. 2.]
[ 2. 2. 2.]]]]
shap9 =(1, 1, 1, 3),eval=
[[[[ 1. 1. 1.]]]]
shap10=(1, 2, 2, 3),eval=
[[[[ 1. 1. 1.]
[ 1. 1. 1.]] [[ 1. 1. 1.]
[ 1. 1. 1.]]]]
shap11=(1, 2, 2, 3),eval=
[[[[ 2. 2. 2.]
[ 2. 2. 2.]] [[ 2. 2. 2.]
[ 2. 2. 2.]]]]
shap12=(1,),eval=
[ 1.]
shap13=(1, 2, 2, 3),eval=
[[[[ 1. 1. 1.]
[ 1. 1. 1.]] [[ 1. 1. 1.]
[ 1. 1. 1.]]]]
shap14=(1, 2, 2, 3),eval=
[[[[ 2. 2. 2.]
[ 2. 2. 2.]] [[ 2. 2. 2.]
[ 2. 2. 2.]]]]
shap15=(1, 2, 2, 3),eval=
[[[[ 1. 1. 1.]
[ 0. 0. 0.]]
[[ 1. 1. 1.]
[ 0. 0. 0.]]]]
shap16=(1, 2, 2, 3),eval=
[[[[ 1. 1. 1.]
[ 1. 1. 1.]]
[[ 1. 1. 1.]
[ 1. 1. 1.]]]]
shap17=(1, 2, 2, 3),eval=
[[[[ 2. 2. 2.]
[ 1. 1. 1.]]
[[ 2. 2. 2.]
[ 1. 1. 1.]]]]
这个结果说明了什么呢?说明张量加法时,维数不等时会自动扩充,用存在的数字填充。
比如下面这个[4, 3, 2, 3]的矩阵A,

我们把A加上[1, 2, 3]结果为
[[[[1 2 3]
[2 3 4]]
[[3 4 5]
[4 5 6]]
[[5 6 7]
[6 7 8]]]
[[[1 2 3]
[2 3 4]]
[[3 4 5]
[4 5 6]]
[[5 6 7]
[6 7 8]]]
[[[1 2 3]
[2 3 4]]
[[3 4 5]
[4 5 6]]
[[5 6 7]
[6 7 8]]]
[[[1 2 3]
[2 3 4]]
[[3 4 5]
[4 5 6]]
[[5 6 7]
[6 7 8]]]]
TF-搞不懂的TF矩阵加法的更多相关文章
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- 深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示 ...
- tensorflow 基本函数(1.tf.split, 2.tf.concat,3.tf.squeeze, 4.tf.less_equal, 5.tf.where, 6.tf.gather, 7.tf.cast, 8.tf.expand_dims, 9.tf.argmax, 10.tf.reshape, 11.tf.stack, 12tf.less, 13.tf.boolean_mask
1. tf.split(3, group, input) # 拆分函数 3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow ...
- tf.metrics.sparse_average_precision_at_k 和 tf.metrics.precision_at_k的自己理解
tensorflow最大的问题就是大家都讲算法,不讲解用法,API文档又全是英文的,看起来好吃力,理解又不到位.当然给数学博士看的话,就没问题的. 最近看了一系列非常不错的文章,做一下记录: http ...
- deep_learning_Function_tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法
[Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值 ...
- tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...
- python 用嵌套列表做矩阵加法
写一个函数,接收两个由嵌套列表模拟成的矩阵,返回一个嵌套列表作为计算结果,要求运行效果如下: >>> matrix1 = [[1, 1], [-3, 4]] >>> ...
- TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- TensorFlow 辨异 —— tf.add(a, b) 与 a+b(tf.assign 与 =)、tf.nn.bias_add 与 tf.add(转)
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而 ...
随机推荐
- Alpha 冲刺 —— 十分之六
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 测试服务器并行能力 学习MSI.CUDA ...
- 【AGC010F】Tree Game
Description 有一棵\(n\)个节点的树(\(n \le 3000\)),第\(i\)条边连接\(a_i,b_i\),每个节点\(i\)上有\(A_i\)个石子,高桥君和青木君将在树上玩游戏 ...
- Linux内核分析实验五
一.给MenuOS增加time和time-asm命令 1. 克隆并自动编译MenuOS rm menu -rf 强制删除原menu文件 git clone http: cd menumake root ...
- Jenkins(二)---jenkins之Git+maven+jdk+tomcat
git+maven+jdk+tomcat 这四个软件可以百度在linux下的安装,不再赘述. server A ---> jenkins主机ip:192.168.100.119 serve ...
- array_multisort 二维数组排序
用PHP自带array_multisort函数排序 <?php $data = array(); $data[] = array('volume' => 67, 'edition' ...
- 火狐,discuz同步登录问题解决
<script type="text/javascript" src="http://******/uc/api/uc.php?time=1503386589&am ...
- Python模拟登录cnblogs
Python利用requests.Session对象模拟浏览器登录cnblogs request.Session对行可以跨请求的保持cookie,非常方便的用于模拟登录. cnblogs登录页面分析: ...
- GO_05_2:Golang 中 panic、recover、defer 的用法
函数 defer 1. 它的执行方式类似其他语言中的折构函数,在函数体执行结束后按照调用顺序的 相反顺序 逐个执行 2. 即使函数发生 严重错误 也会被执行,类似于 java 中 try{...} ...
- Java基础-IO流对象之File类
Java基础-IO流对象之File类 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.IO技术概述 回想之前写过的程序,数据都是在内存中,一旦程序运行结束,这些数据都没有了,等下 ...
- Vue入坑教程(二)——项目结构详情介绍
之前已经介绍了关于Vue的脚手架vue-cli的安装,以及一些文件目录介绍.具体可以查看<vue 入坑教程(一)--搭建vue-cli脚手架> 下面简单说一下具体的文件介绍 (一) pac ...