来源知乎:

dropout 的过程好像很奇怪,为什么说它可以解决过拟合呢?(正则化)

  • 取平均的作用: 先回到正常的模型(没有dropout),我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。(例如 3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果)。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络(随机删掉一半隐藏神经元导致网络结构已经不同),整个dropout过程就相当于 对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。
  • 减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。(这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况)。 迫使网络去学习更加鲁棒的特征 (这些特征在其它的神经元的随机子集中也存在)。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的模式(鲁棒性)。(这个角度看 dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高)

drop out为什么能够防止过拟合的更多相关文章

  1. 关于 Dropout 防止过拟合的问题

    关于 Dropout 可以防止过拟合,出处:深度学习领域大神 Hinton,在2012年文献:<Improving neural networks by preventing co-adapta ...

  2. overfitting(过度拟合)的概念

    来自:http://blog.csdn.net/fengzhe0411/article/details/7165549 最近几天在看模式识别方面的资料,多次遇到“overfitting”这个概念,最终 ...

  3. CNN 防止过拟合的方法

    CNN 防止过拟合的方法 因为数据量的限制以及训练参数的增多,几乎所有大型卷积神经网络都面临着过拟合的问题,目前常用的防止过拟合的方法有下面几种:      1. data augmentation: ...

  4. XGBoost参数

    XGBoost参数 转自http://blog.csdn.net/zc02051126/article/details/46711047 在运行XGboost之前,必须设置三种类型成熟:general ...

  5. xgboost-python参数深入理解

    由于在工作中应用到xgboost做特征训练预测,因此需要深入理解xgboost训练过程中的参数的意思和影响. 通过search,https://www.analyticsvidhya.com/blog ...

  6. 基于pytorch的CNN、LSTM神经网络模型调参小结

    (Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...

  7. 机器学习——XGBoost大杀器,XGBoost模型原理,XGBoost参数含义

    0.随机森林的思考 随机森林的决策树是分别采样建立的,各个决策树之间是相对独立的.那么,在我们得到了第k-1棵决策树之后,能否通过现有的样本和决策树的信息, 对第m颗树的建立产生有益的影响呢?在随机森 ...

  8. Python机器学习笔记:XgBoost算法

    前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...

  9. 机器学习&深度学习基础(目录)

    从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. ...

随机推荐

  1. 遇到问题---java---安装新版本jdk后Failed reading value of registry key

    情况 情况是原本安装有jdk1.7,能正常运行,现在要升级到1.8. 直接在oracle的网站下载1.8安装后修改配置为1.8后: 能用javac编译成功,但java命令运行时报错: Failed r ...

  2. 解题:CQOI 2017 小Q的棋盘

    题面 由树的结构我们可以知道,最终要么是连一条(最长的)链都没走完,要么是走了一些点最后走了最长的链.为什么总是说最长的链呢,因为在树上这样走的过程中(最后不要求返回的话)除了一条链都会被走两次,显然 ...

  3. Feign来调用服务

    Feign是一个声明式的伪Http客户端,它使得写Http客户端变得更简单.使用Feign,只需要创建一个接口并注解.它具有可插拔的注解特性,可使用Feign 注解和JAX-RS注解.Feign支持可 ...

  4. python 字符串切片知识巩固

    切片操作(slice)可以从一个字符串中获取子字符串(字符串的一部分).我们使用一对方括号.起始偏移量start.终止偏移量end 以及可选的步长step 来定义一个分片. 格式: [start:en ...

  5. Hadoop基础-HDFS分布式文件系统的存储

    Hadoop基础-HDFS分布式文件系统的存储 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.HDFS数据块 1>.磁盘中的数据块 每个磁盘都有默认的数据块大小,这个磁盘 ...

  6. Linux 下搭建 Svn+Apache

    一.安装apache 1.检查apache是否安装 rpm -qa|grep httpd 2.使用yum安装apache yum -y install httpd 3.记住安装的版本号 httpd.x ...

  7. [Luogu 3398] 仓鼠找sugar

    [Luogu 3398] 仓鼠找sugar 又是 LCA- 前两天死活写不过的一个题今天终于顺手切了. 思路嘛参考了一楼题解. 就是说,对于 a, b, c, d 四个点, 令 x = LCA(a, ...

  8. Java并发编程原理与实战十二:深入理解volatile原理与使用

    volatile:称之为轻量级锁,被volatile修饰的变量,在线程之间是可见的. 可见:一个线程修改了这个变量的值,在另一个线程中能够读取到这个修改后的值. synchronized除了线程之间互 ...

  9. Redis实战(四)CentOS 7上Redis哨兵

    什么是哨兵 顾名思义,哨兵的作用就是对Redis的系统的运行情况的监控,它是一个独立进程.它的功能有2个: 1. 监控主数据库和从数据库是否运行正常: 2. 主数据出现故障后自动将从数据库转化为主数据 ...

  10. [转载]C语言程序的内存分配方式

    "声明一个数组时,编译器将根据声明所指定的元素数量为数量为数组保留内存空间."其实就是编译器在编译的过程中,会加入几条汇编指令在程序里处理内存分配,并不是说编译时就分配了内存,不要 ...